CHAPTER 7

Sorting

7.1 MOTIVATION

In this chapter, we use the term list to mean a collection of records, each record having
one or more fields. The fields used to distinguish among the records are known as keys.
Since the same list may be used for several different applications, the key fields for
record identification depend on the particular application. For instance, we may regard a
telephone directory as a list, each record having three fields: name, address, and phone
number. The key is usually the person’s name. However, we may wish to locate the
record corresponding to a given number, in which case the phone number field would be
the key. In yet another application we may desire the phone number at a particular
address, so the address field could also be the key.

One way to search for a record with the specified key is to examine the list of
records in lefi-to-right or right-to-left order. Such a search is known as a sequential
search. We assume that the list of records is stored in positions | through n of an amray.
~ We use-array indexes 1 through = for our records rather than 0 through n—1 because one

of the sort methods we develop, heap sort, employs the the array representation of a
heap. This representation (see Section 5.6), begins at position 1 of an array. However,



all the sort methods and examples of this chapter are adapted easily to work with record
indexes that begin at 0. The datatype of each record is element and each record is
assumed to have an integer field key. Program 7.1 gives a sequential search function that
examines the records in the list ¢ [1:n] in left-to-right order,

int segSearclt {(element a[], int k, int n)
{/* search a'l:n]; return the least i such that
ali] .key = k; return 0, if k is not in the array */
int 1i;
for (1 = 1; 1 <= n && al[i]l.key != k; 1++)
;
if (i » n)} return 0;
return i;

}

Program 7.1 Sequential search

i a[l:n} does not contain a record with key k, the search is unsuccessful. Pro-
gram 7.1 makes » key comparisons when the search is unsuccessful. For a successful
search, the number of key comparisons depends on the position of the search key in the
array a. When all keys are distinct and a[i] is being searched for, i key comparisons are
made. So, the average number of comparisons for a snccessful search is

(Y d/n=(n+1)/2
1=isn

It is possible to do much better than this when looking up phone numbers. The
fact that the entries in the list (i.¢., the telephone directory) are in lexicographic order (on
the 'name key) enables one to look up a number while examining only a very few entries
4n the list. Binary search (see Chapter 1) is one of the better-known methods for search-
ing an ordered, sequential list. A binary search takes only Ologn) time (o search a list
with n records. This is considerably better than the O(n) time required by a sequential
search. We note that when a sequential search is performed on an ordered list, the condi-
tional of the for loop of segSearch can be changed to i <=n && alil.key < k. This
change must be accompanied by a change of the conditional i>n to
i>nllalilkey !=k These changes improve the performance of Program 7.1 for
unsuccessful searches.

Getting back to our example of the telephone directory, we notice that neither a
sequential nor ‘a binary search strategy corresponds to the search method actually
employed by humans. If we are looking for a name that begins with the letter W, we start
the search toward the end of the directory rather than at the middle. A search method
based on this interpolation scheme would begin by comparing k with a[i ].key, where
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i ={(k—alllkey)/(aln]key —a[l].key)) * n, and a[1].key and a [n |.key are the smal-
lest and largest keys in the list. An interpolation search can be used only when the list is
ordered. The behavior of such a search depends on the distribution of the keys in the list.

Let us now look at another example in which the use of ordered lists greatly
reduces the computational effort. The problem we are now concemed with is that of
comparing two lists of records containing data that are essentially the same but have
been obtained from two different sources. Such a problem could arise, for instance, in
the case of the United States Internal Revenue Service (IRS), which might receive mil-
lions of forms from various employers stating how much they paid their employees and
then another set of forms from individual employees stating how much they received. So
we have two lists of records, and we wish to verify that there is no discrepancy between
the two. Since the forms arrive at the IRS in a random order, we may assume a random
arrangement of the records in the lists. The keys here are the social security numbers of
the employees.

Let list] be the employer list and list2 the employee list. Let list1[i]. key and
list2[i]. key, respectively, denote the key of the ith record in list | and fisr 2. We make
the following assumptions about the required verification:

(1) If there is no record in the employee list corresponding to a key in the employer
list, a message is to be sent to the employee,

(2) Ifthe reverse is true, then a message is to be sent to the employer.

(3}  If there is a discrepancy between two records with the same key, a message to this
effect is to be output.

Function verify1 (Program 7.2} solves the verification problem by directly compar-
ing the two unsorted lists. The data type of the records in each list is element and we
assume that the keys are integer. The complexity of verify1 is O(mn), where n amd m
are, respectively, the number of records in the employer and employee lists. On the
other hand, if we first sort the two lists and then do the comparison, we can carry out the
verification task in time O(tg,,(n)+15,, (M) + n + m), where tg,,(n) is the time needed to
sort a list of n records. As we shall see, it is possible to sort n records in O(nlogn) time,
so the computing time becomes O(max{rnlogn, mlogm}). Function verify2 (Program 7.3)
achieves this time.

We have seen two important uses of sorting: (1) as an aid in searching and (2) as a
means for matching entries in lists. Sorting also finds application in the solution of many
other more complex problems from areas such as optimization, graph theory and job
scheduling. Consequently, the problem of sorting has great relevance in the study of
computing. Unfortunately, no one sorting method is the best for all applications. We
shall therefore study several methods, indicating when one is superior to the others.

First let us formally state the problem we are about to consider. We are given a
list of records (R, R,, +--, R;). Each record, R;, has key value K;. In addition, we
assume an ordering relation (<) on the keys so that for any two key values xand y, x = y



void verifyl(element listl[], element list2([], int n, int m)
{/* compare two unordered lists listl{l:n] and list2[l:m] */
int i,Jj, marked[MAX-SIZE];

for (i = 1; i <= m; 1i++)
marked[i] = FALSE;
for (1 = 1; i <= n; 1i++)
if ({j = segSearch{list2,m,listl[i].key)} == 0)
printf("%d is not in list 2\n",listl[i}.key);
else
/* check each of the other fields from listl[i] and
list2[j], and print out any discrepancies */
marked[]j] = TRUE;
for (i = 1; 1 <= m; 1i++)
if {(!marked(i])
printf("%d is not in list 1\n",list2[i].key);
}

Program 7.2: Verifying two unsorted lists using a sequential search

or x < yory < x. The ordering relation {<) is assumed to be transitive (i.e., for any three
values x, y, and z, x <y and y < z implies x < z). The sorting problem then is that of
finding a permutation, o, such that K, € Kgg41y, 1 i <n — 1. The desired ordering is
(Ro1ys Ro@ys * s Ramy):

Note that when the list has several key values that are identical, the permutation,
g, is not unique. We shall distinguish one permutation, &, from the others that also
order the list. Let o, be the permutation with the following properties:

(]) KGJ.(I')SKG,(J'+1)! l<is<n-—1.

(2) Ifi<jand K;== K; in the input list, then R; precedes R; in the sorted list.

A sorting method that generates the permutation o, is stable.

We characterize sorting methods into two broad categories: (1) internal methods
(i.e., methods to be used when the list to be sorted is small enough so that the entire sort
can be carried out in main memory) and (2) external methods (i.¢., methods to be used on
larger lists). The following internal sorting methods will be developed: insertion sort,
quick sort, merge sort, heap sort, and radix sort. This development will be followed by a
discussion of external sorting. Throughout, we assume that relational operators have
been overloaded so that record comparison is done by comparing their keys.
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void verify2(element listl[], element 1ist2[], int n, int m)
{/* same as verifyl, but we sort listl and list2 first */
int i, 7;
sort (listl,n); sort(listZ,m);
i=7=1;

while (i <= n && Jj <= m)
if (listl[il.key < list2[3j}].key) {
printf("%d is not in list 2\n",listl[i].key);
i+4+;
1
else if (listl({i].key == list2[j].key) |
/* compare listl[i] and 1list2[j]} on each of the other
fields and report any discrepancies */
1++; J++;
}
else {
printf("%d is not in list 1\n", list2[]].key);
J++;
}
for(; i <= n; i++)
printf("%d is not in list 2\n", listl[i].key);
for {; j <= m; j++)
printf ("%d is not in list 1\n", list2{j].key);
}

Program 7.3: Fast verification of two sorted lists

7.2 INSERTION SORT

The basic step in this method is to insert a new record into a sorted sequence of i records
in such a way that the resulting sequence of size i + 1 is also ordered. Function insert
{Program 7.4) accomplishes this insertion.

The use of a [0] enables us to simplify the while loop, avoiding a test for end of
list (i.e., { < 1). In insertion sort, we begin with the ordered sequence a[1] and succes-
sively insert the records @ [2], a[3], - - -, a[n]. Since each insertion leaves the resultant
sequence ordered, the list with # records can be ordered making n — 1 insertions. The
details are given in function insertionSort (Program 7.5).



void insert{element e, element al[], int i}

{/* insert e into the ordered list afl:i] such that the
resulting list a[l:i+1l] is also ordered, the array a
must have space allocated for at least i+2 elements */
af0l = e;
while (e.key < ali].key)

{
af{i+l] = al[i]l;
i-—;

1

alfi+i] = e;

)

Program 7.4: Insertion into a sorted list

vold insertionSort{element afl], int n}
{/* sort al[l:n] intc nondecreasing order */
int 3;
for (j = 2; § <= n; Jj++) {
element temp = aljl;
insert{temp, a, i-1);

}

Program 7.5: Insertion sort

Analysis of insertionSort: In the worst case insert(e, a, i) makes i + 1 comparisons
before making the insertion. Hence the complexity of Insert is O(i). Function insertion-
Sort invokes insert fori = j—1=1,2, ---,n — 1. So, the complexity of insertionSort is

n-1
O(Y, (i +1)y=Oln?).
i=1

We can also obtain an estimate of the computing time of insertion sort based on
the relative disorder in the input list. Record R; is left out of order (LOO) iff
R; < {nax{Rj}. The insertion step has to be carried out only for those records that are

f<i

LOO. If k is the number of LOO records, the computing time is O((k + 1)n} = Ofkn).
We can show that the average time for insertionSort is O(n?) as well. O
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Example 7.1: Assume that » = 5 and the input key sequence is 5, 4, 3, 2, 1. After each
insertion we have

;S Hl 21 31 4] [5]
- 5 4 3 2 1
2 4 5 3 2 1
3 3 4 5 2 1
4 2 3 4 5 1
5 1 2 3 4 5

For convenience, only the key field of each record is displayed, and the sorted part
of the list is shown in bold. Since the input list is in reverse order, as each new record is
inserted into the sorted part of the list, the entire sorted part is shifted right by one posi-
tion. Thus, this input sequence exhibits the worst-case behavior of insertion sort. O

Example 7.2: Assume that n = 5 and the input key sequence is 2, 3, 4, 5, 1. After each
iteration we have

1 [2) [31 ] 5]

S
—
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In this example, only record 5 is LOO, and the time for each j =2, 3, and 4 is O(1),
whereas for j = 5itis O(n). O :

It should be fairly obvious that insertionSort is stable. The fact that the computing
time is O(kn) makes this method very desirable in sorting sequences in which only a
very few records are LOO (i.e., k<<n). The simplicity of this scherne makes it about the
fastest sorting method for small # (say, n < 30).

Variations
1. Binary Insertion Sort: We can reduce the number of comparisons made in an inser-
tion sort by replacing the sequential searching technique used in insert (Program 7.4)

with binary search. The number of record moves remains unchanged.

2. Linked Insertion Sort: The elements of the list are represented as a linked list rather
than as an array. The number of record moves becomes zero because only the link fields



require adjustment. However, we must retain the sequential search used in insert.

EXERCISES

1. Write the status of the list (12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18) at the end of each
iteration of the for loop of insertionSort (Program 7.5).

2. Write a function that implements binary insertion sort. What is the worst-case
number of comparisons made by your sort function? What is the worst-case
number of record moves made? How do these compare with the correspending
numbers for Program 7.57

3. Write a function that implements linked insertion sort. What is the worst-case
number of comparisons made by your sort function? What is the worst-case
number of record moves made? How do these compare with the corresponding
numbers for Program 7.57

7.3 QUICKSORT

We now turn our attention to a sorting scheme with very good average behavior. The
quick sort scheme developed by C. A. R. Hoare has the best average behavior among the
sorting methods we shall be studying. In quick sort, we select a pivot record from among
the records to be sorted. Next, the records to be sorted are reordered so that the keys of
records to the left of the pivot are less than or equal to that of the pivot and those of the
records to the right of the pivot are greater than or equal to that of the pivot. Finally, the
records to the left of the pivot and those to its right are sorted independently (using the
quick sort method recursively). '

Program 7.6 gives the resulting quick sort function. To sort a[1:n], the function
invocation is quickSort (a, 1, n). Function quickSort assumes that a [# + 1] has been set
to have a key at least as large as the remaining keys.

Example 7.3: Suppose we are to sort a list of 10 records with keys (26, 5, 37, 1, 61, 11,
59, 15, 48, 19). Figure 7.1 gives the status of the list at each call of quickSort. Square
brackets indicate sublists yet to be sorted. O

Analysis of quickSort: The worst-case behavior of quickSort is examined in Exercise 2
and shown to be O(n?). However, if we are lucky, then each time a record is correctly
positioned, the sublist to its left will be of the same size as that to its right. This would
leave us with the sorting of two sublists, each of size roughly n/2. The time required to
position a record in a list of size n is O(n). If T(n) is the time taken to sort a list of
records, then when the list splits roughly into two equal parts each time a record is posi-
tioned correctly, we have
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vold quick3cort{element a[], int left, int right)
{/* sort a[left:right] intc nondecreasing order
on the key field; al[left].key is arbitrarily
chosen as the pivot key; it is assumed that
afleft] .key <= al[right+l].key */
int pivot,i, 3;
element temp;
if (left < right) {
i = left; j = right + 1;

pivot = alleft].key;
do {/* search for keys from the left and right
sublists, swapping out-of-order elements until

the left and right boundaries cross or meet */
do i++; while (al[i].key < pivot);
do j——; while (al[j]l.key > pivot);
if (1 < j) SWAP(al[il,aljl, temp);
} while (i < §);
SWaP(alleft],alj],temp);
quickSort(a, left, j-1};
guickSort(a, j+1,right);

}

Program 7.6: Quick sort

T(n)<cn + 2T (n/2), for some constant ¢
Scen + 2en/2 + 2T (n/4))
€2cn +4T(n/4)

<en logyn +rT(1) =0O(n logn)

Lemma 7.1 shows that the average computing time for function quickSort is
O(n logn). Moreover, experimental results show that as far as average computing time
is concerned, Quick sort is the best of the internal sorting methods we shall be studying.



Rl Rz R3 R4 Rs R6 R7 Rg Rg Rm left right
26 5 37 1 61 1" 59 15 48 19] 1 10
[11 5 19 1 15) 26 59 61 48 371 1 5
[1 5] 11 19 151 26 [59 6l 48 37 1 2

1 5 I M9 151 26 [59 61 48 37] 4 5

1 5 11 15 19 26 [59 6l 48 37] 7 10
1 5 11 15 19 26 [48 371 59 [61] 7 8

1 5 11 15 19 26 37 48 59  [61] 10 10

1 5 il 15 19 26 37 48 59 61

Figure 7.1: Quick sort example

Lemma 7.1: Let T,,,.(n) be the expected time for function guickSort to sort a list with »
records. Then there exists a constant & such that T,,,.(n) < krlog,n forn > 2.

Proof: In the call to quickSort (list ,1, n), the pivot gets placed at position j. This leaves
us with the problem of sorting two sublists of size j — 1 and n — j. The expected time for
this i8 T (f — 1) + Tpe(n —~ j). The remainder of the function clearly takes at most cn
time for some constant ¢. Since j may take on any of the values 1 to n with equal proba-
bility, we have

n n-1
The(n)<en + —l'z(Tm,g(j ~D+ T (n—j)=cn+ AZTavg(j) (7.1)
Rz fj=o

forn 22. We may assume 7,,,,(0) < b and T, (1) < b for some constant 5. We shall now
show T,,,(n) < knlog.nforn 22 and £ = 2(b + ¢). The proof is by induction on n.
Induction base: Forn =2,Eq. (7.1) yields 7,,,,(2) < 2¢ + 2b < knlog,2.

Induction hypothesis: Assume T, (n)<knlog.n for 1 <n <m.

Induction step: From Eq. (7.1) and the induction hypothesis we have

4 2m) , 4 2k7CH.
Tog(m)<cm + ; + r—n'ngavg(])Scm + m + - j%jlog,] (7.2)

Since jlog,j is an increasing function of j, Eq. (7.2) yields

T m*log,m 2
Tavg(m)gcm + & + %J.xlogexdx =cm + & + l [_i _m
m m m m 2 4
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=cm + 4b + kmlogem-“%l“ <kmlog.m, form=2 0O
m

Unlike insertion sort, where the only additional space needed was for one record,
quick sort needs stack space to implement the recursion. If the lists split evenly, as in the
above analysis, the maximum recursion depth would be log n, requiring a stack space of
Oftog n). The worst case occurs when the list is split into a left sublist of size n — | and
a right sublist of size O at each level of recursion. In this case, the depth of recursion
becomes #, requiring stack space of O{n). The worst-case stack space can be reduced by
a factor of 4 by realizing that right sublists of size less than 2 need not be stacked. An
asymptotic reduction in stack space can be achieved by sorting smaller sublists first. In
this case the additional stack space is at most O(log n).

Variation—Quick sort using a median-of-three: Our version of quick sort always
picked the key of the first record in the current sublist as the pivot. A better choice for
this pivot is the median of the first, middle, and last keys in the current sublist. Thus,
pivet = median (K, K., K.}, For example, median{10, 5, 7} = 7 and median{10, 7,
71=1.

EXERCISES
1. Draw a figure similar to Figure 7.1 starting with the list (12, 2, 16, 30, 8, 28, 4, 10,
20, 6, 18).
2. (a) Show that quickSort takes O(n?) time when the input list is already in sorted
order.

(b)  Show that the worst-case time complexity of quickSort is Q(n?).
(c)  Why is list [left] < list [right + 1] required in qguickSort?

3. (a) Write a nonrecursive version of gquickSort incorporating the median-of-three
rule to determine the pivot key.

(b)  Show that this function takes O{n log ») time on an already sorted list.

4. Show that if smaller sublists are sorted first, then the recursion in quickSort can be
-simulated by a stack of depth O{log n).

5. Quick sort is an unstable sorting method. Give an example of an input list in
which the order of records with equal keys is not preserved.

74 HOW FAST CAN WE SORT?

Both of the sorting methods we have seen so far have a worst-case behavior of O(#?). It
is natural at this point to ask the question, What is the best computing time for sorting



that we can hope for? The theorem we shall prove shows that if we restrict our question
to sorting algorithms in which the only operations permitted on keys are comparisons
and interchanges, then O(n log n) is the best possible time.

The method we use is to consider a tree that describes the sorting process. Each
vertex of the tree represents a key comparison, and the branches indicate the result.
Such a tree is called a decision tree. A path through a decision tree represents a
sequence of computations that an algorithm could produce,

Example 7.4: Let us look at the decision tree obtained for insertion sort working on a
list with three records (Figure 7.2). The input sequence is R, R;, and R3, so the root of
the tree is labeled [1, 2, 3]. Depending on the outcome of the comparison between keys
K, and K,, this sequence may or may not change. If K; < K, then the sequence
becomes [2, 1, 3]; otherwise it stays [1, 2, 3]. The full tree resulting from these com-
parisons is given in Figure 7.2.

K, <K,)[1,2,3]

K; <K3)[2,1,3]

—

No

Ky <KED2.3.1]

v

No
(13.2] 123N Csep ) (sop D21
il I \ VI

Figure 7.2: Decision tree for insertion sort

The leaf nodes are labeled 1 to V1. These are the only points at which the algo-
rithm may terminate. Hence, only six permutations of the input sequence are obtainable
from this algorithm. Since all six of these are different, and 3! = 6, it follows that this
algorithm has enough leaves to constitute a valid sorting algorithm for three records,
The maximum depth of this tree is 3. Figure 7.3 gives six different orderings of the key
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values 7, 9, and 10, which show that all six permutations are possible. O

sample input key values that

leaf ; permutation give the permutation

I 123 [7.9,10]

H 132 [7,10,9]
11 312 [9,10,7]

v 213 [9.7.10]

Vv 231 [10,7,9]

VI 321 [10,9,7]

Figure 7.3: Sample input permutations

Theorem 7.1: Any decision tree that sorts n distinct elements has a height of at least
logz(n 1) + 1.

Proof: When sorting n elements, there are n! different possible results. Thus, every
decision tree for sorting must have at least n! leaves. But a decision tree is also a binary
tree, which can have at most 257! leaves if its height is k. Therefore, the height must be
atleastlog; n!+ 1, O

Corollary: Any algorithm that sorts only by comparisons must have a worst-case com-
puting time of Q(n log n).

Proof: We must show that for every decision tree 'with n! leaves, there is a path of
length cnlog,n, where c is a constant. By the theorem, there is a path of length log,n !.
Now ’ .
al=nn-Dn-2) - BN 2 @/2)"2
So, logyn ! 2 (n/2)log, (r/2) = Qinlog n). O
Using a similar argument and the fact that binary trees with 27 leaves must have an

average root-to-leaf path length of {X(n log n), we can show that the average complexity
of comparison-based sorting methods is Q(n log n).



7.5 MERGE SORT

7.51 Merging

Before looking at the merge sort method to sort # records, let us see how one may merge
two sorted lists to get a single sorted list. Program 7.7 gives the code for this. The two
lists to be merged are initList [i:m] and initList [m +1:n]. The resulting merged list is
mergedList [i n].

void merge{element initList[}, element mergedList][],
int i, int m, int n)
{/* the sorted lists initList[i:m] and initList[m+l:n] are
merged to obtain the sorted list mergedList[i:n] */

int j,k,t; .
J = m+l; /* index for the second sublist */
k = i; /* index for the merged list */

while (i <= m && J <= n) {
if (initList[i].key <= initList{j].key)
mergedList [k++] = initList[i++];
else
mergedList [k++]

i

initList{j++1;
}
if (1 > m)
/* mergedList{k:n] = initList[j:n] */
for (t = Jd; £t <= n; t++)
mergedListit] = initList[t];
else
/* mergedList{k:n] = initList[i:m] */
for (t = 1i; t <= m; t++)
mergedList (k+t—-11 = initList[t];

Program 7.7: Merging two sorted lists

Analysis of merge: In each iteration of the while loop, & increases by 1. The total incre-
ment in & is at most # — i + 1. Hence, the while loop is iterated at most n — i + 1 times.
The for statements copy at most n—i + 1 records. The total time is therefore
On—i+1)

If each record has a size s, then the time is O(s{n — ! + 1)). When s is greater than
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1, we can use linked lists instead of arrays and obtain a new sorted linked list containing
these n — [ + 1 records. Now, we will not need the additional space for n — I + 1 records
as needed in merge for the array mergedList. Instead, space for n — ! + 1 links is needed.
The merge time becomes O(n — i + 1) and is independent of s. Note that n — ! + 1 is the
number of records being merged. O

7.5.2 Iterative Merge Sort

This version of merge sort begins by interpreting the input list as comprised of n sorted
sublists, each of size 1. In the first merge pass, these sublists are merged by pairs to
obtain n /2 sublists, each of size 2 (if n is odd, then one sublist is of size 1). In the second
merge pass, these n/2 sublists are then merged by pairs to obtain #/4 sublists. Each
merge pass reduces the number of sublists by half. Merge passes are continued until we
are left with only one sublist. The example below illustrates the process.

Example 7.5: The input list is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19). The tree of Figure
7.4 illustrates the sublists being merged at each pass. O

26 177] [ [e1] [1] [59] [15] [48] [19]
S 7 N7 NS

5 26 1 77] 11 61 [15 59| |1 8 |
I 5 2/6/ 77] [1 \1\5 53/ 61| [ 19 48 |
K 5 Ns 2% 61 7] [ 19 48 |
|1 5 11 15 \19 26 48 59 61/ 77 |

Figure 7.4: Merge tree

Since a merge sort consists of several merge passes, it is convenient first to write a
function (Program 7.8) for a merge pass. Now the sort can be done by repeatedly invok-
ing the merge-pass function as in Program 7.9.



void mergePass (element initList({], element mergedList{],
int n, int s8)
{/* perform one pass of the merge sort, merge adjacent
pairs of sorted segments from initList{] into mergedList[],
n is the number of elements in the list, s is
the size of each sorted segment */
int i, 3;
for (i = 1; 1 <=n-—-2 * s + 1; 1 += 2 * 5)
merge(initList,mergedlList,i,i + s - 1,1 + 2 * 5 — 1});
if (i + s - 1 < n)
merge(initList,mergedlist,i,i + s — 1,n};
else
for (j = 1i; j <= n; Jj++)
mergedList{jl = initList[j]l;

Program 7.8: A merge pass

void mergeSort (element af{], int n)

{/* sort a[l:n] using the merge sort method */
int 8§ = 1; /* current segment size */
element extra[MAX SIZE];

while (s < n) {
mergePass(a, extra, n, s);

5 *= 2;
mergePass (extra, a, n, s);
5 *= 25

}

Program 7.9: Mergé sort

Analysis of mergeSort: A merge sort consists of several passes over the input. The first
pass merges segments of size 1, the second merges segments of size 2, and the ith pass
merges segments of size 2'~!. Thus, the total number of passes is [ logon ]. As merge
showed, we can merge two sorted segments in linear time, which means that each pass
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takes O(n) time. Since there are [ logyn | passes, the total computing time is O(n log n).
0O

You may verify that mergeSort is a stable sorting function.

7.5.3 Recursive Merge Sort

In the recursive formulation we divide the list to be sorted into two roughly equal parts
called the left and the right sublists. These sublists are sorted recursively, and the sorted
sublists are merged.

Example 7.6: The input list (26, 5,77, 1, 61, 11, 59, 15, 49, 19) is to be sorted using the
recursive formulation of merge sort. If the sublist from left to right is currently to be
sorted, then its two sublists are indexed from left to |(left + right)2| and from
|(Yeft + right)/2} + 1 to right. The sublist partitioning that takes place is described by
the binary tree of Figure 7.5. Note that the sublists being merged are different from those
being merged in mergeSort. O

[26] [5] [77] [v] le1] [} [59] [15] [48] [19]
5 26 11 59 \

3
]5 26 77[ \1 61] [11 15 59\ y19 481
| 1 5 26 61 77 \ \ 11 15 19 48 59]
{1 5 11 15 19 26 48 59 61 77}

Figure 7.5; Sublist partitioning for recursive merge sort

To eliminate the record copying that takes place when merge (Program 7.7) is used
to merge sorted sublists we associate an integer pointer with each record. For this pur-
pose, we employ an integer array link {1:n] such that /ink [i] gives the record that fol-
lows record i in the sorted sublist. In case link[i] = 0, there is no next record. With the
addition of this array of links, record copying is replaced by link changes and the



runtime of our sort function becomes independent of the size s of a record. Also the addi-
tional space required is O(n). By comparison, the iterative merge sort described earlier
takes O(snlogn) time and O(sn) additional space. On the down side, the use of an array
of links yields a sorted chain of records and we must have a follow up process to physi-
cally rearrange the records into the sorted order dictated by the final chain. We describe
the algorithm for this physical rearrangement in Section 7.8.

We assume that initially /ink [i] =0, 1 <i < n. Thus, each record is initially in a
chain containing only itself. Let starrl and start2 be pointers to two chains of records.
The records on each chain are in nondecreasing  order, Let
listMerge (a, link, startl, start2) be a function that merges two chains startl and stars?
in array a and returns the first position of the resulting chain that is linked in nondecreas-
ing order of key values. The recursive version of merge sort is given by function rmer-
geSort (Program 7.10). To sort the array a{l:n] this function is invoked as
rmergeSort(a , link, 1,n). The start of the chain ordered as described earlier is
returned. Function listMerge is given in Program 7.11.

int rmergeSort (element al[]l, int link[], int left, int right)
{/* al[left:right] is to be sorted, link[i] is initially 0
for all i, returns the index of the first element in the
sorted chain */
if (left »= right) return left;
int mid = (left + right) / 2;
return listMerge{a, link,
rmergeSort{a, link, left, mid),
/* sort left half */
rmergeSort{a, link, mid + 1, right});
/* sort right half */
}

Program 7.10: Recursive merge sort

Analysis of rmergeSort: 1t is easy to see that recursive merge sort is stable, and its com-
puting time is O(n log n). O

Variation—Natural Merge Sort: We may modify mergeSort to take into account the
prevailing order within the input list. In this implementation we make an initial pass over
the data to determine the sublists of records that are in order. Merge sort then uses these
initially ordered sublists for the remainder of the passes. Figure 7.6 shows natural merge
sort using the input sequence of Example 7.6.
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int listMerge(element al[], int link[], int startl, int start2)
{/* sorted chains beginning at startl and start2,
respectively, are merged; 1ink[0] is used as a
temporary header; returns start of merged chain */
int lastl, last2, lastResult = 0;
for (lastl = startl, last2?2 = start2; lastl && last2;)
if {(a[lastl] <= al[last2]) {
link[lastResult] = lastl;
lastResult = lastl; lastl = link[lastl];
}
else {
link[lastResult] = last2;
lastResult = last2; last2 = link[lastZ2];
}

/* attach remaining records to result chain */
if {lastl == 0) link[lastResult] = last2;
else link[lastResult] = lastl;
return 1link{0];
}

Program 7.11: Merging sorted chains

|26] [5 77| |1 61‘ \11 59| |15 48\ [19]
| 5 26 77 | } 1 11 59 61 i [ 15 19 48 |
[ 1 5 11 26 59 61 77 ’ LIS 19 48 |

[,
wn
p—
s
—
Lh
—
(Y]

26 48 59 61 77 ]

Figure 7.6: Natural merge sort



EXERCISES

1. Write the status of the list (12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18) at the end of each
phase of mergeSort (Program 7.9).

Prove that mergeSort is stable.

Write an iterative natural merge sort function using arrays as in function mer-
geSort. How much time does this function take on an initially sorted list? Note
that mergeSort takes O(n log n) on such an input list. What is the worst-case com-
puting time of the new function? How much additional space is needed?

4. Do the previous exercise using chains,

7.6 HEAP SORT

Although the merge sort scheme discussed in the previous section has a computing time
of Ofn log n), both in the worst case and as average behavior, it requires additional
storage proportional to the number of records to be sorted. The sorting method we are
about to study, heap sort, requires only a fixed amount of additional storage and at the
same time has as its worst-case and average computing time O(n log n). However, heap
sort is stightly slower than merge sort.

In heap sort, we utilize the max-heap structure introduced in Chapter 5. The dele-
tion and insertion functions associated with max heaps directly yield an O(n log n) sort-
ing method. The n records are first inserted into an initially empty max heap. Next, the
records are extracted from the max heap one at a time. It is possible to create the max
heap of n records faster than by inserting the records one by one into an initially empty
heap. For this, we use the function adjust (Program 7.12), which starts with a binary tree
whose left and right subtrees are max heaps and rearranges records so that the entire
binary tree is a max heap. The binary tree is embedded within an array using the standard
mapping. If the depth of the tree is d, then the for loop is executed at most d times.
Hence the computing time of adjust is O(d).

To sort the list, first we create a max heap by using adjust repeatedly, as in the first
for loop of function heapSort (Program 7.13). Next, we swap the first and last records in
the heap. Since the first record has the maximum key, the swap moves the record with
maximum key into its correct position in the sorted array. We then decrement the heap
size and readjust the heap. This swap, decrement heap size, readjust heap process is
repeated n — 1 times to sort the entire array a[l:n]. Each repetition of the process is
called a pass. For example, on the first pass, we place the record with the highest key in
the nth position; on the second pass, we place the record with the second highest key in
position n — 1; and on the ith pass, we place the record with the ith highest key in posi-
tionn—i+1.

Example 7.7: The input list is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19). If we interpret this
list as a binary tree, we get the tree of Figure 7.7(a). Figure 7.7(b) depicts the max heap
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volid adjust(element a[], int root, int n)
{/* adqjust the binary tree to establish the heap */
int child, rootkey;
element temp;
temp = a[rootl];
rootkey = al[root].key;
chiid = 2 * root; /* left child */
while {child <= n) {
if {(child < n) &&
(alchild] .key < al[child+l].key)}
child++;
if (rootkey > alchild].key) /* compare root and
max, child */

break;

else |
afchild / 2] = alchild]; /* move to parent */
child *= 2;

}
}
alchild/2] = temp;
}

Program 7.12: Adjusting a max heap

after the first for loop of heapSort. Figure 7.8 shows the array of records following each
of the first seven iterations of the second for loop. The portion of the array that still
represents a max heap is shown as a binary tree; the sorted part of the array is shown as
an array. O

Analysis of heapSort: Suppose 28! <n < 2%, 50 the tree has k levels and the number of
nodes on level i is < 2L, In the first for loop, adjust (Program 7.12) is called once for
each node that has a child. Hence, the time required for this loop is the sum, over each
level, of the number of nodes on a level multiplied by the maximum distance the node
can move. This is no more than

Y 2lUk-) = Y 2*i<a ¥ i/2 < 2n=0(@)
1<i<k 1<igk-1 1<igsk-1

In the next for loop, n - 1 applications of adjust are made with maximum tree-depth
k = [log, (n + 1)] and SWAP is invoked n — 1 times. Hence, the computing time for this
loop is O(n logn). Consequently, the total computing time is O(n log n). Note that apart



void heapSort{element al}, int n)
{/* perform a heap sort on a[l:n] */
int i, 3;
element temp;

for (i = n/2; 1 > 0; i-——)
adjust({a,i,n});

for (i = n-1; i > 0; i-=) |
SWaP(all],ali+1l], temp};
adjust(a,l,1i});

}

Program 7.13: Heap sort

(6] {7 [61 {7

181 [9] [10] 81 9] {10}
(a) Input array (b) Initial heap

Figure 7.7: Array interpreted as a binary tree

from some simple variables, the only additional space needed is space for one record to
carry out the swap in the second for loop. O
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(6] [7] [6] (7]

18] 19]

(a) Heap size = 9 (b) Heap size =8
Sorted = [77] Sorted = [61, 77]

[6] [7]
{c) Heap size =7 (d) Heap size = 6
Sorted = [59, 61, 77] Sorted = [48, 59, 61, 77]

Figure 7.8: Heap sort example (continued on next page)

EXERCISES

1. Write the status of the list (12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18) at the end of the
first for loop as well as at the end of each iteration of the second for loop of heap-
Sort (Program 7.13).

2. Heap sort is unstable. Give an example of an input list in which the order of
records with equal keys is not preserved.



(2] [3]

(41 [5]
(¢} Heap size =5 (f) Heap size = 4 (g) Heap size =3
[26, 48, 59, 61, 77] [19, 26, 48, 59, 61, 77] [15, 19, 26, 48, 59, 61, 77]

Figure 7.8: Heap sort example

7.7 SORTING ON SEVERAL KEYS

We now look at the problem of sorting records on several keys, K', K2, -+, K" (K' is
the most significant key and K™ the least). A list of records Ry, ', R, is said to be
sorted with respect to the keys K!, K2, - - -, K" iff for every pair of records i and j, i < j
and (K{, ---,K)) < (K}, **, K%). The r-tuple (x, -, x,) is less than or equal to the
r-uple (yy, -+, y,) iffeither x; = y;, 1 <i <j, and x;,; <y;,, for some j <r,orx; =y,
1<i<r.

For example, the problem of sorting a deck of cards may be regarded as a sort on
two keys, the suit and face values, with the following ordering relations:

K [Suits]: A EIWH
K? {Face values]: 2<3<4 - ---<10<J<Q<K<A

A sorted deck of cards therefore has the following ordering:
24, .. AN, .., 28, .. Ab

There are two popular ways to sort on multiple keys. In the first, we begin by sort-
ing on the most significant key K'!, obtaining several *‘piles’” of records, each having the
same value for K'. Then each of these piles is independently sorted on the key K? into
“‘subpiles™ such that all thé records in the same subpile have the same values for K! and
K?. The subpiles are then sorted on K>, and so on, and the piles are combined. Using
this method on our card deck example, we would first sort the 52 cards into four piles,
. one for each of the suit values, then sort each pile on the face value, Then we would
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place the piles on top of each other to obtain the desired ordering.

A sort proceeding in this fashion is referred to as a most-significant-digit-first
(MSD) sort. The second way, quite naturally, is to sort on the least significant digit first
(LSD). An LSD sort would mean sorting the cards first into 13 piles corresponding to
their face values (key K2). Then, we would place the 3’s on top of the 2’s, - - -, the
kings on top of the queens, the aces on top of the kings; we would turn the deck upside
down and sort on the suit (K!) using a stable sorting method to obtain four piles, each
orderd on K?2; and we would combine the piles to obtain the required ordering on the
cards.

Comparing the two functions outlined here (MSD and L.SD), we see that LSD is
simpler, as the piles and subpiles obtained do not have to be sorted independently (pro-
vided the sorting scheme used for sorting on the keys XK', 1 <i <r, is stable). This in
turn implies less overhead.

The terms LSD and MSD specify only the order in which the keys are to be sorted.
They do not specify how each key is to be sorted. When sorting a card deck manually,
we generally use an MSD sort. The sorting on suit is done by a bin sort (i.e., four “*bins”
are set up, one for each suit value and the cards are placed into their corresponding bins).
Next, the cards in each bin are sorted using an algorithm similar to insertion sort. How-
ever, there is another way to do this. First use a bin sort on the face value. To do this we
need 13 bins, one for each distinct face value. Then collect all the cards together as
described above and perform a bin sort on the suits using four bins. Note that a bin sort
requires only O(n) time if the spread in key values is O(n).

LSD or MSD sorting can be used to sort even when the records have only one key.
For this, we interpret the key as being composed of several subkeys. For example, if the
keys are numeric, then each decimal digit may be regarded as a subkey. So, if the keys
are in the range 0 <K €999, we can use either the LSD or MSD sorts for three keys
(K, K2, K3), where K! is the digit in the hundredths place, K2 the digit in the tens
place, and K the digit in the units place. Since 0 <K' <9 for each key K, the sort on
each key can be carried out using a bin sort with 10 bins.

In a radix sort, we decompose the sort key using some radix r. When r is 10, we
get the decimal decomposition described above. When r = 2, we get binary decomposi-
tion of the keys. In a Radix-r Sort, the number of bins required is r.

Assume that the records to be sorted are Ry, - -+, R,. The record keys are decom-
posed using a radix of . This results in each key having 4 digits in the range 0 through
r — 1. Thus, we shall need r bins. The records in each bin will be linked together into a
chain with front[i], 0<i < r, a pointer to the first record in bin i and rear[i], a pointer
to the last record in bin i. These chains will operate as queues. Function radixSort (Pro-
gram 7.14) formally presents the LSD radix-r method.

Analysis of radixSort: radixSort makes d passes over the data, each pass taking
O(n + r) time. Hence, the total computing time is O{d(n + r)). The value of 4 will
depend on the choice of the radix r and also on the largest key. Different choices of r



int radixSort(element a{], int link[], int d, int r, int n)
{/* sort a[l:n]) using a d-digit radix-r sort, digit(afij,j,r)

returns the jth radix-r digit (from the left) of a[i}’s key;
each digit is in the range is [0,r); sorting within a digit
is done using a bin sort */

int front[r], rear(r]; /* queue front and rear pointers =*/
int i, bkin, current, first, last;

/* create initial chain of records starting at first */

first = 1;
for (1 = 1; 1 < n; i++) link[i] = 1 + 1;
link[n] = 0;

fer (i = d-1; i »>= 0; i—-)
{/* sort on digit i */
/* initialize bins to empty queues */
for (bin = 0; bin < r; bin++) frontlbin] = 0;

for (current = first; current; current = linkf[current])
{/* put records intoc queues/bins */
bin = digit(a[current],i,r);

if (front([bin! == 0} freont[bin] = current;
else link[rear[bin}] = current;
rear {bin] = current;

}

/* f£find first nenempty queue/bin */
for (bin = 0; !front([binl; bin++);
first = front[bin]; last = rear[bin];

/* concatenate remaining queues */
for {(bin++; bin < r; bin++)}
if (front[bin])
{link([last] = front[bin}; last = rear{bin];}
link[last] = 0;
}

return first;

Program 7.14: LSD radix sort
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will yield different computing times. O

Example 7.8: Suppose we are to sort 10 numbers in the range [0, 999]. For this exam-
ple, we use r = 10 (though other choices are possible). Hence, d = 3. The input list is
linked and has the form given in Figure 7.9(a). The nodes are labeled R,, - -, Ryy.
Figure 7.9 shows the queues formed when sorting on each of the digits, as well as the
lists after the queues have been collected from the 10 bins. O

all] al?] al3] al4] a3l al[6] al7] al8] a9 afl10]
}179H208I—>|3%H 93 #%%984%{ 55 }—>| 9 Han 33 ]

(a) Initial input

el0]  efl]  el2] €3]  eld]  el5]  el6] e[l el8]  e[9]

9
859

271] \93\ |984| |55} \306\ 208 179

!

fI01  f1 f121 0 f131 fl4) fIST fl6)  fIT1 0 fI81 fI9]

[271]>] 93 |={ 33 l—>|984Hﬂ—>|306}—>i208}—>{179J—>| 859]-={ 9 |

(b) First-pass queues and resulting chain

Figure 7.9: Radix sort example (continued on next page)

EXERCISES
1. Write the status of the list (12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18) at the end of each
pass of radixSort (Program 7.14). Use r = 10.

2. Under what conditions would an MSD radix sort be more efficient than an LSD
radix sort?

3. Does radixSort result in a stable sort when used to sort numbers as in Example
7.8?



el0]  e[l]  ef2] e[3] eld]l el5] el6] el7]  el8]  e[9)

Kl
208 , 859 '

306 33 271 984 93

fI01 fl1 o fl21 FB31 flA1 fI51 fl6l  FIT1 fI81  £I9]

|306H208H 9 ]_>| 33 H 55 %271H179H984H 93 |

(c) Second-pass queues and resulting chain

el0]  e[l}  e[2] e[3] e[d]l el5S] el6] e[7]  e[8]  e[O]

(1“7?| 208| [306 859] [984
oo

fior - fOL fl2) fBB1 0 fl41 IS fl6l  fIT1 fI81  fI9]

| 9 F= 33 |= 55 |+ QBHl79H2OS|—>[271H306H859}—>{948]

(d) Third-pass queues and resulting chain

Figure 7.9: Radix sort example
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4. Write a sort function to sort records R, - - -, R, lexically on keys (K Lo KD
for the case when the range of each key is much larger than n. In this case, the
bin-sort scheme used in radixSort to sort within each key becomes inefficient
(why?). What scheme would you use to sort within a key if we desired a function
with (a) good worst-case behavior, (b) good average behavior, (¢) small n, say
<157

5. If we have n records with integer keys in the range [0, n?), then they may be
sorted in O(n log n) time using heap sort or merge sort. Radix sort on a single key
(i.e., d = 1 and r = n?) takes O(n?) time. Show how to interpret the keys as two
subkeys so that radix sort will take only O(n) time to sort n records. (Hint; Each
key, K;, may be written as K; = K/n + K7 with K] and K7 integers in the range
[0, n).)

6. Generalize the method of the previous exercise to the case of integer keys in the
range (0, n”) obtaining an O(pn) sorting method.

7. Experiment with radixSort to see how it performs relative to the comparison-based
sort methods discussed in earlier sections.

7.8 LIST AND TABLE SORTS

Apart from radix sort and recursive merge sort, all the sorting methods we have looked at
require excessive data movement. That is, as the resuit of a comparison, records may be
physically moved. This tends to slow down the sorting process when records are large.
When sorting lists with large records, it is necessary to modify the sorting methods so as
to minimize data movement. Methods such as insertion sort and our iterative merge sort
can be modified to work with a linked list rather than a sequential list. Inthis case each
record will require an additional link field. Instead of physically moving the record, we
change its link field to reflect the change in the position of the record in the list. At the
end of the sorting process, the records are linked together in the required order. In many
applications (e.g., when we just want to sort lists and then output them record by record
on some external media in the sorted order), this is sufficient. However, in some applica-
tions it is necessary to physically rearrange the records in place so that they are in the
required order. Even in such cases, considerable savings can be achieved by first per-
forming a linked-list sort and then physically rearranging the records according fo the
order specified in the list. This rearranging can be accomplished in linear time using
some additional space.

If the list has been sorted so that at the end of the sort, first is a pointer to the first
record in a linked list of records, then each record in this list will have a key that is
greater than or equal to the key of the previous record (if there is a previous record). To
physically rearrange these records into the order specified by the list, we begin by inter-
changing records R, and Rj,;,. Now, the record in the position R, has the smallest key.



If first # 1, then there is some record in the list whose link field is 1. If we could change
this link field to indicate the new position of the record previously at position 1, then we
would be left with records R,, - - -, R, linked together in nondecreasing order. Repeat-
ing the above process will, after n — 1 iterations, result in the desired rearrangement.
The snag, however, is that in a singly linked list we do not know the predecessor of a
node. To overcome this difficulty, our first rearrangement function, /stSort1 (Program
7.15), begins by converting the singly linked list firs into a doubly linked list and then
proceeds to move records into their correct places. This function assumes that links are
stored in an integer array as in the case of our radix sort and recursive merge sort func-
tions.

void listSortl{element al], int linka[], int n, int first)
{/* rearrange the sorted chain beginning at first so that
the records al[l:n] are in sorted order */
int linkb([MAX_SIZE]; /* array for backward links */
int i, current, prev = (;
element temp;

for (current = first; current; current = linka[current])
{/* convert chain into a doubly linked list */
linkb[current] = prev;

prev = current;

for (i = 1; i < n ; i++) /* move al[first] to position i
while maintaining the list */

if {(first != i) {
if (linka[i]) linkb{linka[i]] = first;
linka[linkb([i]] = first;
SWAP{a(first]), ali]l, temp);
SWAP(linkalfirst], linkalil, temp);
SWAP(linkb[first], linkb[i], temp);

}

first = linkalil;

}

Program 7.15: Rearranging records using a doubly linked list

Example 7.9: After a list sort on the input list (26, 5, 77, 1, 61, 11, 59, 15, 48, 19) has
been made, the list is linked as in Figure 7.10(a) (only the key and link fields of each
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record are shown).

i R, | R, [ Ry | Ry T Rs | Re | Ry | Re | Ry | Ryo
key | 26| 5] 77| t] 61 ] 11 ] 5| 15| 48 19
linka | 91 6. o] 2| 3| 8] 5[ 10| 7 1

(a) Linked list following a list sort, first = 4

i R, | Ry | Ry | Ry | Rs | Re | R | Rs | Re | Ryo
key |26 5| 77| 161 [ 11]59]15]| 48| 19
linka | 91 6| o 2| 3| 8| s5]10] 7 1
inkb | 10 4| s| o 7] 2] o] 6] 1 8

(b) Corresponding doubly linked list, first = 4

Figure 7.10: Sorted linked lists

Following the links starting at first, we obtain the logical sequence of records Ry, R, Rg,
R, R 5. Ry, Ry, Ry, Rs, and R;. This sequence corresponds to the key sequence 1, 5,
11, 15, 19, 26, 48, 59, 61, 33, Filling in the backward links, we get the doubly linked list
of Figure 7.10(b). Figure 7.11 shows the list following the first four iterations of the

second for loop of listSort1. The changes made in each iteration are shown in boldface.
a

Analysis of listSort1: If there are n records in the list, then the time required to convert
the chain first into a doubly linked list is O(n). The second fer loop is iterated n — 1
times. In each iteration, at most two records are interchanged. This requires three record
moves. If each record is m words long, then the cost per record swap is O{m). The total
time is therefore O(nm).

The worst case of 3(rn — 1) record moves (note that each swap requires 3 record
moves) is achievable. For example, consider the input key sequence R, Ry, -~ -, R,,
withR; <R3 < - <R,and R, >R,. O '

Although several modifications to Zist1 are possible, one of particular interest was
given by M. D. MacLaren. This modification results in a rearrangement function, list-
Sort2, in which no additional link fields are necessary. In this function (Program 7.16),
after the record Ry, is swapped with R;, the link field of the new R; is set to first to indi-
cate that the original record was moved. This, together with the observation that first
must always be 2 i, permits a correct reordering of the records.



i Ry [ R | Ry [ Ry [ Rs | Rg | Ry | Ry | Ry | Ry
key 1 5| 77 26 61 11 59 15 48 19
linka 2 6 0 9 3 8 5 10 7 4
linkb 0 4 51 10 7 2 9 6 4 8

(a) Configuration after first iteration of the for loop of listSortl, first =2

i Ry | Ry | Ry | Ry | Ry | R | Ry | Ry | Ry | Ryg
key 1 57726 61| 11]59] 15| 48 | 19
linka | 2| 6] o 9| 3| 8] s|1w0] 7 4
inkb | 01 4| s|1w0] 7| 21 9| 6| 4 8

(b) Configuration after second iteration, first=6

i Ry | R, | Ry iRy | Rs | Rg | Ry | Ry | Ry | Ry
key 1 5 11 26 | 61 77 | 59 15 48 19
linka 2 6 8 9 6 0 5 10 7 4
linkb 0 4 2 10 7 5 9 6 4 8
(c} Configuration after third iteration, firsr= 8
i Ry | R; | Ry | Ry | Rs | Rg | R | Ry | Ry | Ry
key 1 5 it 15 | 61 T 59 26 | 48 19
linka. 2 6 8 10 6 0 5 9 7 8
linkb 0 4 2 6 7 5 9 10 8 8

(.d) Configuration after fourth iteration, first = 10

Figure 7.11: Example for listSort1 (Program 7.15)

Example-7.10: The data are the same as in Example 7.9. After the list sort we have the

configuration of Figure 7.10(a). The configuration after each of the first five iterations of
the for loop of listSors2 is shown in Figure 7.12. O

Analysis of listSort2: The sequence of record moves for liszSort2 is identical to that for
listSort1. Hence, in the worst case 3{(n — 1) record moves for a total cost of O{nm) are
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void listSort2{element al], int link{], int n, int first)
{/* same function as listl except that a second link array
linkb is not required. */

int i;

element temp;

for (i = 1; 1 < n; 1++)

{/* find correct record for ith position, its index is
> i as records in positicns 1, 2, ..., 1 - 1 are

already correctly positioned */

while (first < i) first = link[first];

int g = link([first]; /* alq]l is next in sorted order */

if (first != 1)

{/* a[first] has ith smallest key, swap with a[i] and
set link from old position of af[i] to new one */
SWAP(a[i], alfirst], temp);
link[first] = link{i];
link[i] = first;

}

first = q;

}

Program 7.16: Rearranging records using only one link field

made. No node is examined more than once in the while loop. So, the total time for the
while loop is O(r). O

Although the asymptotic computing time for both fistSertl and listSort2 is the
same, and the same number of record moves is made in either case, we expect listSort2
to be slightly faster than listSortl because each time two records are swapped, listSortl
does more work than listSort2 does. listSorf1 is inferior to listSort2 in both space and
time considerations.

The list sort technique is not well suited for quick sort and heap sort. The sequen-
tial representation of the heap is essential to heap sort. For these sort methods, as well as
for methods suited to list sort, one can maintain an auxiliary table, f, with one entry per
record. The entries in this table serve as an indirect reference to the records.

At the start of the sort, ¢[i ] = i, 1 £ <n. If the sorting function requires a swap of
ali] and a[j], then only the table entries (i.e., ¢ [{ ] and ¢ [f]) need to be swapped. At the
end of the sort, the record with the smallest key is a[¢[1]} and that with the largest



i Ri | Ry | Ry | Ry | Rs | Rg | Ry | Ry | Ry | Ryg
key 1 5 77 26 | 61 11 59 15 | 48 19
link 4 6 0 9 3 8 5 10 7 1

(a) Configuration after first iteration of the for loop of listSort2, first =2

i R | Ry | Ry | Ry | Rs | Re | Ry | Ry | Ry | Ry
key 1| 5] 77726 61| 11 ] 59| 15| 48| 19
link | 47 6| 0| 9| 3] 8| 5]10] 7 1

(b) Configuration after second iteration, first=6

i R, [ Ry | Ry | Ry | Rs | R4 [ Ry | Ry | Ry | Ry
key 1 5 11 26 | 61 77| 59 15 | 48 19
link 4 6 6 9 3 0 5 10 7 1

(c) Configuration after third iteration, first = 8

J Ry | R, | Ry | Ry | Rs | Rs | Ry | Rg | Ry | Ry
key i 5 11 15 | 61 77| 59 | 26 | 48 19
link | 4| 6| 6| 8| 31 0. 5[ 9} 7 1

(d) Configuration after fourth iteration, first= 10

i Ri | Ry | R3 | Ry | Rs | Rg | R7 | Rg | Rg | Ry
key 1 5| 11 15| 19| 77 | 59 26 | 48 61
link 4 6 6 8| 10 0 5 9 7 3

(e) Configuration after fifth iteration, first = 1

Figure 7.12: Example for listSort2 (Program 7.16)

alt|n]]. The required permutation on the records is a [t [1]], a[£{2]], - - -, alt[n]] (see

Figure 7.13). This table is adequate even in situations such as binary search, where a

sequentialty ordered list is needed. In other situations, it may be necessary to physically
rearrange the records according to the permutation specified by ¢,

The function to rearrange records corresponding to the perrnutation £[1], ¢[2].

+, tln} is a rather interesting application of a theorem from mathematics: Every
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Auxiliary table f before sorting

1 3 4 5 ‘
50 9 11 8 3

.

L
Y
[ g S
[#8]
—

Table ¢ after sorting

Figure 7.13: Table sort

permutation is made up of disjoint cycles. The cycle for any element i is made up of
i e[i), 2], <o -, t5[i], where ¢/[i] = t[#/71i]l, ¢°[i1 =i, and ¢*[i] = i. Thus, the per-
mutation ¢ of Figure 7,13 has two cycles, the first involving R; and R and the second
involving R,, R3, and R;. Function table (Program 7.17) utilizes this cyclic decomposi-
tion of a permutation. First, the cycle containing R, is followed, and all records are
moved to their correct positions. The cycle containing R, is the next one examined
unless this cycle has already been examined. The cycles for R3, Ry, -+ -, R,_; are fol-
lowed in this order. The result is a physically sorted list.

When processing a trivial cycle for R; (i.e., £[i] = i), no rearrangement involving
record R; is required, since the condition ¢ [i ] = / means that the record with the ith smal-
lest key is K;. In processing a nontrivial cycle for record R; (i.e., t[i] 2 i), R; is moved to
a temporary position temp, then the record at ¢ [i ] is moved to i; next the record at #[£{i ]]
is moved to ¢[i ], and so on until the end of the cycle t*[i] is reached and the record at
temp is moved to *1[{]. C

Example 7.11: Suppose we start with the table ¢ of Figure 7.14(a). This figure also
shows the record keys. The table configuration is that following a Table Sort. There are
two nontrivial cycles in the permutation specified by z. The first is R, R3, Rg, Rs, R).
The second is R,, Rs, R;, R,. During the first iteration (i = 1) of the for loop of
tableSort (Program 7.17), the cycle Ry, Ry, Repyy, Ry, R is followed. Record R, is
moved to a temporary spot temp; R, (i.e., R3) is moved to the position R,: R (ie.,



void tableSort{(element a[], int n, int tl[])

{/* rearrange a[l:n] to correspond to the sequence
alt[1ll]l, ... , alt[n]] */
int i, current, next;
element temp;

for (1 = 1; i < n; i++)
if (t[i] '= i) {/* nontrivial cycle starting at 1 */

temp = afi]; current = i;

do {
next = t[current]; alcurrent} = al[next];
t[current] = current; current = next;

} while (t[current] !'= i);

alcurrent] = temp;

t[current] current;

}

Program 7.17: Table sort

R, | Ry, | Ry [ Ry | Rs | Rg | Ry | Ry
key | 35 | 14 [ 12 [ 42 |26 | 50 | 31 | 18
t 3 2 [8 |5 [7 |1 14 |6

(a) Initial configuration

key 1 12 | 14 | 18 | 42 [ 26 | 35 | 31 | 50
t i (2 13 (s |7 |6 |4 |8

{b) Configuration after rearrangement of first cycle

key 1 12 | 14 | 18 | 26 | 31 | 35 | 42 | 50
t 1 2 3 4 5 6 7 8

(c) Configuration after rearrangement of second cycle

Figure 7.14: Table sort example
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Rg) is moved to R3; Ry is moved to Ry; and finally, the record in temp is moved to R.
Thus, at the end of the first iteration we have the table configuration of Figure 7.14(b).

For i =2 or 3, t[i] =, indicating that these records are already in their correct
positions. When i = 4, the next nontrivial cycle is discovered, and the records on this
cycle (R4, Rs, R;, Ry) are moved to their correct positions. Following this we have the
table configuration of Figure 7.14(c).

For the remaining values of i (/ = 5, 6, and 7), ¢[i] = i, and no more nontrivial
cycles are found. O

Analysis of tableSort: If each record uses m words of storage, then the additional space
needed is m words for temp plus a few more for variables such as i, current, and next.
For the computing time, we observe that the for loop is executed n — | times. If for some
value of i, t[i} =, then there is a nontrivial cycle including & > 1 distinct records
Ry, Ry -+ -, Rp—yyp. Rearranging these records requires & + 1 record moves. Follow-
ing this, the records involved in this cycle are not moved again at any time in the algo-
rithm, as £{j] = j for all such records R;. Hence, no record can be in two different non-
trivial cycles. Let k; be the number of records on a nontrivial cycle starting at R; when
i = lin the for loop. Let k; = 0 for a trivial cycle. The total number of record moves is
n-1

Y, k1)
1=0 k20
Since the records on nontrivial cycles must be different, Yk, <n. The total number of
record moves is maximum when Y k; = n and there are |n/2] cycles. When » is even,
each cycle contains two records. Otherwise, one cycle contains three and the others two
each, In either case the number of record moves is [3n/2]|. One record move costs
O(m) time. The total computing time is therefore O(mn), O

Comparing listSort2 (Program 7.16) and tableSort, we see that in the worst case,
listSort2 makes 3(n—1) record moves, whereas tableSort makes only |3n/2] record
moves. For larger values of m it is worthwhile to make one pass over the sorted list of
records, creating a table t corresponding to a table sort. This would take O(n) time.
Then tableSort could be used to rearrange the records in the order specified by ¢.

EXERCISES
1. Complete Example 7.9,
2. Complete Example 7.10.
3. Write a version of selection sort (see Chapter 1) that works on a chain of records.
4. Write a table sort version of quick sort. Now during the sort, records are not phy-

sically moved. Instead, z[i] is the index of the record that would have been in
position { if records were physically moved around as in guickSort (Program 7.6).
Begin with #fi]1 =i, 1 <i <n. At the end of the sort. ¢ [i 1is the index of the record



that should be in the jth position in the sorted list. So now function table may be
used to rearrange the records into the sorted order specified by r. Note that this
reduces the amount of data movement taking place when compared to quickSort
for the case of large records.

Do Exercise 4 for the case of insertion sort.
Do Exercise 4 for the case of merge sort.

Do Exercise 4 for the case of heap sort.

79 SUMMARY OF INTERNAL SORTING

Of the several sorting methods we have studied, nc one method is best under all cir-
cumstances. Some methods are good for small n, others for large n. Insertion sort is
good when the list is already partially ordered. Because of the low overhead of the
method, it is also the best sorting method for *‘small’” n. Merge sort has the best worst-
case behavior but requires more storage than heap sort. Quick sort has the best average
behavior, but its worst-case behavior is O(r?). The behavior of radix sort depends on the
size of the keys and the choice of r. Figure 7.15 summarizes the asymptotic complexity
of the first four of these sort methods.

Method Worst Average
Insertion sort n?  n?

Heap sort nlogn - nlogn
Merge sort nlogn nlogn
Quick sort n? nlogn

Figure 7.15: Comparison of sort methods

Figures 7.16 and 7.17 give the average runtimes for the four sort methods of Fig-
ure 7.15. These times were obtained on a 1.7GHz Intel Pentium 4 PC with 512 MB RAM
and Microsoft Visual Studio NET 2003. For each #n at least 100 randomly generated
integer instances were run. These random instances were constructed by making
repeated calls to the C function rand. If the time taken to sort these instances was less
than 1 second then additional random instances were sorted until the total time taken was
at least this much. The times reported in Figure 7.16 include the time taken to set up the
random data. For each » the time taken to set up the data and the time for the remaining
overheads included in the reported numbers is the same for all sort methods. As a result,
the data of Figure 7.16 are useful for comparative purposes.
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n Insert Heap Merge Quick

0 0.000 0.000 0.000 0.000

50 0.004 0.009 0.008 0.006
100 0.011 0.019 0.017 0.013
200 0.033 0.042 0.037 0.029
300 0.067 0.066 0.059 0.045
400 0.117 0.090 0.079 0.061
500 0.179 0.116 0.100 0.079
1000 0.662 0.245 0213 0.169
2000 2439 0.519 0.459 0.358
3000 3.390 0.809 0.721 0.560
4000 9.530 1.105 0.972 0.761
5000 15.935 1.410 1.271 0.970

Times are in milliseconds

Figare 7.16: Average times for sort methods

As Figure 7.18 shows, quick sort outperforms the other sort methods for suitably
large n. We see that the break-even point between insertion and quick sort is between 50
and 100. The exact break-cven point can be found experimentally by obtaining run-time
data for n between 50 and 100. Let the exact break-even point be nBreak. For average
performance, insertion sort is the best sort method (of those tested) to use when
n < nBreak, and quick sort is the best when n > nBreak. We can improve on the perfor-
mance of quick sort for n > nBreak by combining insertion and quick sort into a single
sort function by replacing the following statement in Program 7.6

if (left < right) {code to partition and make recursive calls }
with the code

if (left+nBreak < right) {
code to partition and make recursive calls
}
else {
sort a [left:right] using insertion sort;
return;

For worst-case behavior most implementations will show merge sort to be best for
n > ¢ where ¢ is some constant. For n < ¢ insertion sort has the best worst-case behavior.



5+ insertion sort

heap sort
merge sort

quick sort

|
3000 4000 5000

Figure 7.18: Plot of average times (milliseconds)

The performance of merge sort can be improved by combining insertion sort and merge
sort in a manner similar to that described above for combining insertion sort and quick
sort.

The run-time results for the sort methods point out some of the limitations of
asymptotic complexity analysis. Asymptotic analysis is not a good predictor of perfor-
mance for small instances—insertion sort with its O(n%) complexity is better than all of
the O{nlogn) methods for small instances. Programs that have the same asymptotic
complexity often have different actual runtimes.

EXERCISES

1. [Count Sort] The simplest known sorting method arises from the observation that
the position of a record in a sorted list depends on the number of records with
smaller keys. Associated with each record there is a count field used to determine
the number of records that must precede this one in the sorted list. Write a func-
tion to determine the count of each record in an unordered list. Show that if the
list has n records, then all the counts can be determined by making at most



Summary of Internal Sorting 373

n(n — 1)/2 key comparisons,

Write a function similar to table (Program 7.17) to rearrange the records of a list if,
with each record, we have a count of the number of records preceding it in the
sorted list (see Exercise 1).

Obtain Figures 7.16 and 7.18 for the worst-case runtime.

{Programming Project] The objective of this assignment is to come up with a
composite sorting function that is good on the worst-time criterion, The candidate
sort methods are (a) Insertion sort, (b} Quick sort, (c) Merge sort, (d) Heap sort.

To begin with, program these sort methods in C. In each case, assume that n
integers are to be sorted. In the case of guick sort, use the median-of-three
method. In the case of merge sort, use the iterative method (as a separate exercise,
you might wish to compare the runtimes of the iterative and recursive versions of
merge sort and determine what the recursion penalty is in your favorite language
using your favorite compiler). Check out the correctness of the programs using
some test data. Since quite detailed and working functions are given in the book,
this part of the assignment should take little effort. In any case, no points are
earned until after this step.

To obtain reasonably accurate runtimes, you need to know the accuracy of
the clock or timer you are using. Determine this by reading the appropriate
manual. Let the clock accuracy be 8. Now, run a pilot test to determine ballpark
times for your four sorting functions for n = 500, 1000, 2000, 3000, 4000, and
5000. You will notice times of 0 for many of these values of n. The other times
may not be much larger than the clock accuracy.

10 time an event that is smaller than or near the clock accuracy, repeat it
many times and divide the overall time by the number of repetitions. You should
obtain times that are accurate to within 1%,

We need worst-case data for each of the four sort methods. The worst-case
data for insertion sort are easy to generate. Just use the sequence n, n—1, n-2,
-+, 1. Worst-case data for merge sort can be obtained by working backward.
Begin with the last merge your function will perform and make this work hardest.
Then look at the second-to-last merge, and so on. Use this logic to obtain a pro-
gram that will generate worst-case data for merge sort for each of the above values
of n.

Generating worst-case data for heap sort is the hardest, so, here we shall use a
random permutation generator (one is provided in Program 7.18). We shall gen-
erate random permutations of the desired size, clock heap sort on each of these,
and use the max of these times to approximate to the worst-case time. You will be
able to use more random permutations for smaller values of n than for larger. For
no value of n should you use fewer than 10 permutations. Use the same technique
to obtain worst-case times for quick sort,

Having settled on the test data, we are ready to perform our experiment.



void permute(element al[], int n)
{/* random permutation generator */
int i, j;

element temp;

for (i = n; 1 >= 2; i—-—)

]

{

j =rand() % i + 1;
/* j = random integer in the range (1, 1j */
SWAP{al[jl]l, alil, temp);

Program 7.18: Random permutation generator

Obtain the worst-case times. From these times you will get a rough idea when one

-function performs better than the other. Now, narrow the scope of your experi-

ments and determine the exact value of n when one sort method outperforms
another. For some methods, this value may be 0. For instance, each of the other
three methods may be faster than quick sort for all values of n.

Plot your findings on a single sheet of graph paper. Do you see the n’
behavior of insertion sort and quick sort and the nlogn behavior of the other two
methods for suitably large n (about n > 20)? If not, there is something wrong with
your test or your clock or with both. For each value of n determine the sort func-
tion that is fastest (simply look at your graph). Write a composite function with
the best possible performance for all n. Clock this function and plot the times on
the same graph sheet you used earlier.

WHAT TO TURN IN

You are required to submit a report that states the clock accuracy, the number of
random permutations fried for heap sort, the worst-case data for merge sort and
how you generated it, a table of times for the above values of n, the times for the
narrowed ranges, the graph, and a table of times for the composite function, In
addition, your report must be accompanied by a complete listing of the program
used by you (this includes the sorting functions and the main program for timing
and test-data generation).

Repeat the previous exercise for the case of average runtimes. Average-case data
are usually very difficult to create, so use random permutations. This time, how-
ever, do not repeat a permutation many times to overcome clock inaccuracies.
Instead, use each permutation once and clock the overall time (for a fixed n).
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Assume you are given a list of five-letier English words and are faced with the
problem of listing these words in sequences such that the words in each sequence
are anagrams (i.e., if x and ¥ are in the same sequence, then word x is a permuta-
tion of word y). You are required to list out the fewest such sequences. With this
restriction, show that no word can appear in more than one sequence. How would
you go about solving this problem?

Assume you are working in the census department of a small town where the
number of records, about 3000, is small enough to fit into the internal memory of a
computer. All the people currently living in this town were born in the United
States. There is ene record for each person in this town. Each record contains (a)
the state in which the person was born, (b) county of birth, and (¢} name of person.
How would you produce a list of all persons living in this town? The list is to be
ordered by state. Within each state the persons are to be listed by their counties,
the counties being arranged in alphabetical order. Within each county, the names
are also listed in alphabetical order. Justify any assumptions you make.

[Bubble Sort] In a bubble sort several left-to-right passes are made over the array
of records to be sorted. In each pass, pairs of adjacent records are compared and
exchanged if necessary. The sort terminates following a pass in which no records
are exchanged.

{(a) Write a C function for bubble sort.
(b) What is the worst-case complexity of your function?
(c) How much time does your function take on a sorted array of records?

(d) How much time does your function take on an array of records that are in
the reverse of sorted order?

Redo the preceding exercise beginning with an unsorted chain of records and end-
ing with a sorted chain.

[Programming Project] The objective of this exercise is to study the effect of the
size of an array element on the computational time of various sorting algorithms.

(a) Use insertion sort, quick sort, iterative merge sort, and heap sort to sort
arrays of (/) characters (char), (if) integers (int), (iif) floating point numbers
(float), and (iv) rectangles (Assume that a rectangle is represented by the
coordinates of its bottom left point and its height and width, all of which are
of type float. Assume, also, that rectangles are to be sorted in non-
decreasing order of their areas.)

(b) Obtain a set of runtimes for each algorithm-data type pair specified above.
{There should be sixteen such pairs.) To obtain a set of runtimes of an
algorithm-data type pair, you should run the algorithm on at least four arrays
of different sizes containing elements of the appropriate data type. The ele-
ments in an array should be generated using a random number generator



(c) Draw tables and graphs displaying your experimental results, What do you
conclude from the experiments?

7.10 EXTERNAL SORTING

7.10.1 Introduction

In this section, we assume that the lists to be sorted are so large that an entire list cannot
be contained in the internal memory of a computer, making an internal sort impossible.
We shall assume that the list (or file) to be sorted resides on a disk. The term block refers
to the unit of data that is read from or written to a disk at one time. A block generally
consists of several records. For a disk, there are three factors contributing to the
read/wrile time:

(1)  Seek time: time taken to position the readfwrite heads to the correct cylinuer. This
will depend con the number of cylinders across which the heads have to move.

(2)  Latency time: time until the right sector of the track is under the read/write head.

(3)  Transmission time: time to transmit the block of data to/from the disk.

The most popular method for sorting on external storage devices is merge sort.
This method consists of two distinct phases. First, segments of the input list are sorted
using a good internal sort method. These sorted segments, known as runs, are written
onto external storage as they are generated. Second, the runs generated in phase one are
merged together following the merge-tree pattern of Figure 7.4, until only one run is left.
Because the simple merge function merge (Program 7.7} requires only the leading
records of the two runs being merged to be present in memory at one time, it is possible
to merge large runs together. It is more difficult to adapt the other internal sort methods
constdered in this chapter to external sorting.

Example 7.12: A list containing 4500 records is to be sorted using a computer with an
internal memory capable of sorting at most 750 records. The input list is maintained on
disk and has a block length of 250 records. We have available another disk that may be
used as a scratch pad. The input disk is not to be written on. One way to accomplish the
sort using the general function outlined above is to

(1) Internalty sort three blocks at a time (i.e., 750 records) to obtain six runs R; to
R¢. A method such as heap sort, merge sort, or quick sort could be used. These six runs
are written onto the scratch disk (Figure 7.19).

(2) Set-aside three blocks of internal memory, each capable of holding 250
records. Two of these blocks will be used as input buffers and the third as an output
buffer. Merge runs R, and R,. This merge is carried out by first reading one block of
each of these runs into input buffers. Blocks of runs are merged from the input buffers
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run | run 2 run 3 run 4 run 5 né

1-750 751-1500  1501-2250  2251-3000  3001-3750  3751-4500
3 blocks per run

Figure 7.19: Blocked runs obtained after internal sorting

into the output buffer. When the output buffer gets full, it is written onto the disk. If an
input buffer gets empty, it is refilled with another block from the same run. After runs
R, and R; are merged, R, and R, and finally R5 and R, are merged. The result of this
pass is three runs, each containing 1500 sorted records or six blocks. Two of these runs
are now merged using the input/output buffers set up as above to obtain a run of size
3000. Finally, this run is merged with the remaining run of size 1500 to obtain the
desired sorted list (Figure 7.20). O

run 1 run 2 run 3 run 4 run 5 run 6

I

Figure 7.20: Merging the six runs

To analyze the complexity of external sort, we use the following notation:



.= maximum seek time
t;= maximum latency time
t,,= time to read or write one block of 250 records
1;0= time to input or output one block
=ttt 4ty
#;5= time to internally sort 750 records
nt,,= time to merge n .records from input buffers to the output buffer
We shall assume that each time a block is read from or written onto the disk, the
maximum seek and latency times are experienced. Although this is not true in general, it

will simplify the analysis. The computing times for the various operations in our 4500~
record example are given in Figure 7.21.

operation time
(1) read 18 blocks of input, 36t + O15

181, internally sort, 615,
write 18 blocks, 1820

(2) merge runs 1 to 6 in pairs 36t + 45001,
(3) merge two runs of 1500 2415 + 30001,
records each, 12 blocks
(4) merge one run of 3000 361, + 45001,
records with one run of
1500 records
total time 1324, + 12,0002, + 6155

Figare 7.21: Computing times for disk sort example

The contribution of seek time can be reduced by writing blocks on the same
cylinder or on adjacent cylinders. A close look at the final computing time indicates that
it depends chiefly on the number of passes made over the data. In addition to the initial
input pass made over the data for the internal sort, the merging of the runs requires 2-2/3
passes over the data (one pass to merge 6 runs of length 750 records, two-thirds of a pass
to merge two runs of length 1500, and one pass to merge one run of length 3000 and one
of length 1500). Since one full pass covers 18 blocks, the input and output time is
2x(2-2/3 + 1)x 18 £33 = 1321;5. The leading factor of 2 appears because each record
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that is read is also written out again. The merge time is 2-2/3 x 4500¢,, = 12,000¢,,.
Because of this close relationship between the overall computing time and the number of
passes made over the data, future analysis will be concerned mainly with counting the
number of passes being made. Another point to note regarding the above sort is that no
attempt was made to use the computer’s ability to carry out input/output and CPU opera-
tion in parallel and thus overlap some of the time. In the ideal situation we would over-
lap almost all the input/output time with CPU processing so that the real time would be
approximately 132 7,5 = 12,000 ¢,, + 615.

If we have two disks, we can write on one, read from the other, and merge buffer
loads already in memory in parallel. A proper choice of buffer lengths and buffer han-
dling schemes will result in a time of almost 66#,,. This parallelism is an important con-
sideration when sorting is being carried out in a nonmultiprogramming environment. In
this situation, unless input/output and CPU processing is going on in parallel, the CPU is
idle during input/output. In a multiprogramming environment, however, the need for the
sorting program to carry out input/output and CPU processing in parallel may not be so
critical, since the CPU can be busy working on another program (if there are other pro-
grams in the system at the time) while the sort program waits for the completion of its
input/output. Indeed, in many multiprogramming environments it may not even be pos-
sible to achieve parallel input, output, and internal computing because of the structure of
the operating system.

The number of merge passes over the runs can be reduced by using a higher-order
merge than two-way merge. To provide for parallel input, output, and merging, we need
an appropriate buffer-handling scheme. Further improvement in runtime can be obtained
by generating fewer (or equivalently longer) runs than are generated by the strategy
described above. This can be done using a loser tree. The loser-tree strategy to be dis-
cussed in Section 7.10.4 results in runs that are on the average almost twice as long as
those obtained by the above strategy. However, the generated runs are of varying size.
As a result, the order in which the runs are merged affects the time required to merge all
runs into one. We consider these factors now.

7.10.2  k-Way Merging

The two-way merge function merge (Program 7.7) is almost identical to the merge func-
tion just described (Figure 7.20). In general, if we start with m runs, the merge tree
corresponding to Figure 7.20 will have [logym] +1 levels, for a total of [logym] passes
over the data list. The number of passes over the data can be reduced by using a higher-
order merge (i.e., k-way merge for & = 2). In this case, we would simultaneously merge k
runs together. Figure 7.22 illustrates a four-way merge of 16 runs. The number of
passes over the data is now two, versus four passes in the case of a two-way merge. In
general, a k-way merge on m runs requires [log,m] passes over the data. Thus, the
input/output time may be reduced by using a higher-order merge.
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Figure 7.22: A four-way merge on 16 runs

The use of a higher-order merge, however, has some other effects on the sort. To
begin with, k& runs of size s, 53, 53, -- -, § can no longer be merged internally in
k

O} s;) time. In a k-way merge, as in a two-way merge, the next record to be output is
1
the one with the smallest key. The smallest has now to be found from & possibilities and

it conld be the leading record in any of the k runs. The most direct way to merge & runs
is to make k —1 compariions to determine the next record to output. The computing

time for this is O((k — 1) }.s;). Since logm passes are being made, the total number of
1
key comparisons is n(k — Dloggm = n (k — Dlog,m /logyk, where n is the number of

records in the list. Hence, (k — 1)/log;k is the factor by which the number of key com-
parisons increases. As k increases, the reduction in input/output time will be outweighed
by the resulting increase in CPU time needed to perform the k-way merge.

For large k (say, k = 6) we can achieve a significant reduction in the number of
comparisons needed to find the next smallest element by using a loser tree with & leaves
(see Chapter 5). In this case, the total time needed per level of the merge tree is
O(n log,k). Since the number of levels in this tree is O(log,m), the asymptotic internal
processing time becomes Ofn logy k loggm) = O(nlogym). This is independent of .

In going to a higher-order merge, we save on the amount of input/output being car-
ried out. There is no significant loss in internal processing speed. Even though the inter-
nal processing time is relatively insensitive to the order of the merge, the decrease in
input/output time is not as much as indicated by the reduction to log,m passes. This is so
because the number of input buffers needed to carry out a k&-way merge increases with k.
Although k + | buffers are sufficient, in the next section we shall see that the use of
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2k + 2 buffers is more desirable. Since the internal memory available is fixed and
independent of %, the buffer size must be reduced as & increases. This in turn implies a
reduction in the block size on disk. With the reduced block size, each pass over the data
results in a greater number of blocks being written or read. This represents a potential
increase in input/output time from the increased contribution of seek and latency times
involved in reading a block of data. Hence, beyond a certain & value the input/output
time will increase despite the decrease in the number of passes being made. The optimal
value for k depends on disk parameters and the amount of internal memory available for
buffers.

7.10.3 Buffer Handling for Parallel Operation

If & runs are being merged together by a k-way merge, then we clearly need at least &
input buffers and one output buffer to carry out the merge. This, however, is not enough
if input, output, and internal merging are to be carried out in parallel. For instance, while
the output buffer is being written out, internal merging has to be halted, since there is no
place to coliect the merged records. This can be overcome through the use of two output
buffers. While one is being written out, records are merged into the second. If buffer
sizes are chosen correctly, then the time to output one buffer will be the same as the CPU
time needed to fill the second buffer. With only & input buffers, internal merging will
have to be held up whenever one of these input buffers becomes empty and another block
from the corresponding run is being read in. This input delay can also be avoided if we
have 2% input buffers. These 2k input buffers have to be used cleverly to avoid reaching
a situation in which processing has to be held up because of a lack of input records from
any one run. Simply assigning two buffers per run does not solve the problem.

Example 7.13: Assume that a two-way merge is carried out using four input buffers,
in[i], 0 <i< 3, and two output buffers, ou [0] and ou [1]. Each buffer is capable of hold-
ing two records. The first few records of nin 0 have key value 1, 3, 5, 7, 8, 9. The first
few records of run 1 have key value 2, 4, 6, 15, 20, 25. Buffers in[0] and in[2] are
assigned to run 0. The remaining two input buffers are assigned to run 1. We start the
merge by reading in one buffer load from each of the two runs. At this time the buffers
have the configuration of Figure 7.23(a). Now runs 0 and 1 are merged using records
from in [0] and in [1]. In parallel with this, the next buffer load from run 0 is input. If we
assume that buffer lengths have been chosen such that the times to input, output, and
generate an output buffer are all the same, then when ou Q] is full, we have the situation
of Figure 7.23(b). Next, we simultaneously output ou [0], input into in [3] from run 1,
and merge into ou [1]. When ou[1] is full, we have the sitvation of Figure 7.23(c). Con-
tinuing in this way, we reach the configuration of Figure 7.23(¢c). We now begin to out-
put ou[1], input from run O into in [2], and merge into ou[0]. During the merge, all
records from run O get used before ou {0] gets full. Merging must now be delayed until



the inputting of another buffer load from run 0 is completed. O

Example 7.13 makes it clear that if 2k input buffers are to suffice, then we cannot
assign two buffers per run. Instead, the buffer must be floating in the sense that an indivi-
dual buffer may be assigned to any ron depending upon need. In the buffer assignment
strategy we shall describe, there will at any time be at least one input buffer containing
records from each mn. The remaining buffers will be filled on a priority basis (i.e., the
run for which the k-way merging algorithm will run out of records first is the one from
which the next buffer will be filled). One may easily predict which run’s records will be
exhausted first by simply comparing the keys of the last record read from each of the k
runs. The smallest such key determines this run. We shall assume that in the case of
equal keys, the merge process first merges the record from the run with least index. This
means that if the key of the last record read from run i is equal to the key of the last
record read from run j, and { < j, then the records read from i will be exhausted before
those from j. So, it is possible to have more than two bufferloads from a given run and
only one partially full buffer from another run. All bufferloads from the same run are
quened together. Before formally presenting the algorithm for buffer utilization, we
make the following assumptions about the parallel processing capabilities of the com-
puter system available:

(1) We have two disk drives and the input/output channel is such that we can simul-
taneously read from one disk and write onto the other. ‘

(2) 'While data transmission is taking place between an input/output device and a
block of memory, the CPU cannot make references to that same block of memory.
Thus, it is not possible to start filling the front of an output buffer while it is being
written out. If this were possible, then by coordinating the transmission and merg-
ing rate, only one output buffer would be needed. By the time the first record for
the new output block is determined, the first record of the previous output block
has been written out.

(3) To simplify the discussion we assume that input and output buffers are of the same
size.

Keeping these assumptions in mind, we provide a high-level description of the
algorithm obtained wsing the strategy outlined earlier and then illustrate how it works
through an example. Our algorithm, Program 7.19, merges k-runs, k = 2, using a k-way
merge. 2k input buffers and two output buffers are used. Each buffer is a continuous
block of memory. Input buffers are queued in & queues, one queue for each run. It is
assumed that each input/output buffer is long enough to hold one block of records.
Empty buffers are placed on a linked stack. The algorithm also assumes that the end of
each run has a sentinel record with a very large key, say +eo. It is assumed that all other
records have key value less than that of the sentinel record. If block lengths, and hence
buffer lengths, are chosen such that the time to merge one output buffer load equals the
time to read a block, then almost all input, output, and computation will be carried out in
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Figure 7.23: Example showing that two fixed buffers per run are not enough for

continued parallel operation



parallel. Tt is also assumed that in the case of equal keys, the k-way merge algorithm first
outputs the record from the run with the smallest index.

{Steps in buffering algorithm)

Step 1: Input the first block of each of the k runs, setting up % linked queues, each
having one block of data. Put the remaining & input blocks into a linked stack of
free input blocks. Set ou to 0.

Step 2: Let lastKey [i] be the last key input from run i. Let nextRun be the run for
which lastKey is minimum. If lastKey [nextRun | # +o, then initiate the input of
the next block from run nextRun.

Step 3: Use a function kWayMerge to merge records from the k input queues into the
output buffer ox. Merging continues until either the output buffer gets full or a
record with key +oo is merged into ow. If, during this merge, an input buffer
becomes empty before the output buffer gets full or before +o is merged into
ou, the kWayMerge advances to the next buffer on the same queue and returns
the empty buffer to the stack of empty buffers. However, if an input buffer
becomes empty at the same time as the output buffer gets full or + is merged
into ou, the empty buffer is left on the queue, and kWayMerge does not advance
to the next buffer on the queue. Rather, the merge terminates.

Step 4: Wait for any ongoing disk input/output to complete.

Step 5: If an input buffer has been read, add it to the queue for the appropriate run.
Determine the next run to read from by determining NextRun such that
lastKey [nextRun ] is minimum.

Step 6: If lastKey [nextRun} # +co, then initiate reading the next block from run
nextRun into a free input buffer.

Step 7: Initiate the writing of output buffer ox. Set ou to | — ou.

Step 8: If a record with key +oo has been not been merged into the output buffer, go
back to Step 3. Otherwise, wait for the ongoing write to complete and then
terminate.

Program 7.19: k-way merge with floating buffers

We make the following observations about Program 7.19:

(1)  For large k, determination of the queue that will be exhausted first can be found in
log; k comparisons by setting up a loser tree for fast (i ], 0 <i < k, rather than mak-
ing k — 1 comparisons each time a buffer load is to be read in. The change in com-
puting time will not be significant, since this queue selection represents only a
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very small fraction of the total time taken by the algorithm,
(2)  For large k, function kWayMerge uses a tree of losers (see Chapter 5).

(33 All input and output except for the input of the initial & blocks and the output of
the last block is done concurrently with computing. Since, after & runs have been
merged, we would probably begin to merge another set of k runs, the input for the
next set can commence during the final merge stages of the present set of runs.
That is, when lastKey [nextRun] = +<= in Step 6, we begin reading one by one the
first blocks from each of the next set of & runs to be merged. So, over the entire
sorting of a file the only time that is not overlapped with the internal merging time
is the time to input the first £ blocks and that to output the last block.

(4) The algorithm assumes that all blocks are of the same length. Ensuring this may
require inserting a few dummy records into the last block of each run following
the sentinel record with key +oo,

Example 7.14: To illustrate the algorithm of Program 7.19, let vs trace through it while
it performs a three-way merge on the three runs of Figure 7.24. Each run consists of four
blocks of two records each; the last key in the fourth block of each of these three runs is
+c0, We have six input buffers and two output buffers. Figure 7.25 shows the status of
the input buffer queues, the run from which the next block is being read, and the output
buffer being output at the beginning of each iteration of the loop of Steps 3 through 8 of
the buffering algorithm.

Run0 |20 25 26 28 29 30 33 +oo‘

Renl |23 29 34 36]! 38 60 70 +oo!

Run2 |24 28 31 33 40 43 50 +m1
Figure 7.24: Three runs

From line 5 of Figure 7.25 it is evident that during the k-way merge, the test for
“output buffer full?" should be carried out before the test "input buffer empty?”, as the
next input buffer for that run may not have been read in yet, so there would be no next
buffer in that queue. In lines 3 and 4 all six input buffers are in use, and the stack of free
buffers is empty. O

We end our discussion of buffer handling by proving that Program 7.19 is correct.
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Figure 7.25: Buffering example

Theorem 7.2: The following are true for Program 7.19:

(1) In Step 6, there is always a buifer available in which to begin reading the next
block.

(2)  During the k-way merge of Step 3, the next block in the queue has been read in by
the time it is needed.
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Proof: (1) Each time we get to Step 6 of the algorithm, there are at most k + 1 buffer
loads in memory, one of these being in an output buffer. For each queue there can be at
most one buffer that is partially full. If no buffer is available for the next read, then the
remaining k buffers must be full. This means that all the & partially full buffers are empty
(as otherwise there will be more than k+1 buffer loads in memory). From the way the
merge is set up, only one buffer can be both unavailable and empty. This may happen
only if the output buffer gets full exactly when one input buffer becomes empty. But
k > 1 contradicts this. So, there is always at least one buffer available when Step 6 is
being executed.

(2) Assume this is false. Let run R; be the one whose queue becomes empty during
kWayMerge. We may assume that the last key merged was not +oo, since otherwise
kWayMerge would terminate the merge rather than get another buffer for R;. This means
that there are more blocks of records for run R; on the input file, and lastKey [i ] # +e<.
Consequently, up to this time whenever a block was output, another was simultaneously
read in. Input and output therefore proceeded at the same rate, and the number of avail-
able blocks of data was always k. An additional block is being read in, but it does not
get queued until Step 5. Since the queue for R; has become empty first, the selection rule
for choosing the next run to read from ensures that there is at most one block of records
for each of the remaining &k — 1 mns. Furthermore, the output buffer cannot be full at this
time, as this condition is tested for before the input-buffer-empty condition. Thus, fewer
than k blocks of data are in memory. This contradicts our earlier assertion that there
must be exactly k such blocks of data. £

7.10.4 . Run Generation

Using conventional internal sorting methods such as those discussed earlier in this
chapter, it is possible to generate runs that are only as large as the number of records that
can be held in internal memory at one time. Using a tree of losers, it is possible to do
better than this. In fact, the algorithm we shall present will, on the average, generate
runs that are twice as long as obtainable by conventional methods. This algorithm was
devised by Walters, Painter, and Zalk. In addition to being capable of generating longer
runs, this algorithm will allow for parallel input, output, and internal processing.

We assume that input/foutput buffers have been set up appropriately for maximum
overlapping of input, output, and internal processing. Wherever there is an input/output
instruction in the run-generation algorithm, it is assumed that the operation takes place
through the input/output buffers. The run generation algorithm uses a tree of losers. We
assume that there is enough space to construct such a tree for k records, record|[i],
0<i < k. Each node, i, in this tree has one field loser [i]. loser[i], 1 <i < k, represents
the loser of the tournament played at node i. Each of the k record positions record [i}]
has a run number runNum[i], 0 <i < k. This field enables us to determine whether or
not record [i ] can be output as part of the run currently being generated. Whenever the



tournament winner is output, a new record (if there is one) is input, and the tournament is
replayed as discussed in Chapter 5.

Function runGeneration (Program 7.20) is an implementation of the loser tree stra-
tegy just discussed. The variables used in this function have the following significance:

record[i],0<i <k .. the krecords in the tournament tree
loser(i], 1 i<k .. loser of the tournament played at node i
loser[0] ... winner of the tournament
runNum|[i], 0<i <k .. the run number to which record [i ] belongs
currentRun ... rmun number of current run
winner .. overall tournament winner
winnerRun ... tun number for record [winner ]
maxRun ... number of runs that will be generated
lastKey ... key of last record output

The loop of lines 10 to 37 repeatedly plays the tournament outputting records. The
variable lastKey is made use of in line 21 to determine whether or not the new record
input, record|[winner], can be output as part of the current run. If
key [winner ] < lastKey then record [winner ] cannot be output as part of the current run
currentRun, as a record with larger key value has aiready been output in this run. When
the tree is being readjusted (lines 27 to 36), a record with lower run number wins over
one with a higher run number. When run numbers are equal, the record with lower key
value wins. This ensures that records come out of the tree in nondecreasing order of
their run numbers. Within the same run, records come out of the tree in nondecreasing
order of their key values. maxRun is used to terminate the function. In line 18, when we
run out of input, a record with run number maxRun + 1 is introduced. When this record
is ready for output, the function terminates from line 13,

Analysis of runGeneration: When the input list is already sorted, only one run is gen-
erated. On the average, the run size is almost 2k. The time required to generate all the
runs for an # run list is O(z log k), as it takes O(log &) time to adjust the loser tree each
time a record is output. O :

7.10.5 Optimal Merging of Runs

The runs generated by function runs may not be of the same size. When runs are of
different size, the run merging strategy employed so far (i.e., make complete passes over
the collection of runs) does not yield minimum runtimes. For example, suppose we have
four runs of length 2, 4, 5, and 15, respectively. Figure 7.26 shows two ways (o merge
these using a series of two-way merges. The circular nodes represent a two-way merge
using as input the data of the children nodes. The square nodes represent the initial runs.
We shall refer to the circular nodes as internal nodes and the square ones as external
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1 veld runGeneration{int k)
2 {/* run generaticn using a k-player loser tree,

3 variable declarations have been omitted */
4 for (i = 0; 1 < k; i++) {/* input records */
5 readRecord(record[i]}; runNum[i] = 1;

6 }

7 initializeLoserTree(};

8 winner = loser[0]; winnerRun = 1;

9 currentRun = 1; maxRun = 1;
10 while(l) {/* output runs */

11 if (winnerRun != currentRun) {/* end of run */
12 output end of run marker;

13 if (winnerRun > maxRun) return;

14 else currentRun = winnerRun;

15 }

16 writeRecord(record[winner]};

17 lastKey = record[winner].key;

18 if (end ¢f input) runNum|[winner] = maxRun + 1;
19 else { /* input new record into tree */

20 readRecord{record{winner});

21 if (record[winner].key < lastKey}

22 /* new record is in next run */

23 runNum[winner] = maxRun = winnerRun + 1;
24 else runNum[winner] = currentRun;

25 }

26 winnerRun = runNum[winner];

27 /* adjust losers */

28 for (parent = (k+winner)/2; parent; parent /= 2
29 if ({runNum{lcserparent]] < winnerRun) ||
30 { (runNum|[loser [parent]] == winnerRun)
31 && (record[leoser([parent]].key <

32 record[winner] .key)})

33 {/* parent 1s the winner */

34 SWAP (winner, loser[parent], temp);

35 winnerRun = runNum|[winner];

36 }

37 }

38 1}

Program 7.20: Run generation using a loser tree



nodes. Each figure is a merge tree,

2 4

(a) (b)

Figure 7.26: Possible two-way merges

In the first merge tree, we begin by merging the runs of size 2 and 4 to get one of
size 6; next this is merged with the run of size 5 to get a run of size 11; finally this run of
size 11 is merged with the run of size 15 to get the desired sorted run of size 26. When
merging is done using the first merge tree, some records are involved in only one merge,
and others are involved in up to three merges. In the second merge tree, each record is
involved in exactly two merges. This corresponds to the strategy in which complete
merge passes are repeatedly made over the data,

The number of merges that an individual record is involved in is given by the dis-
tance of the corresponding external node from the root. So, the records of the run with
15 records are involved in one merge when the first merge tree of Figure 7.26 is used and
in two merges when the second tree is used. Since the time for a merge is linear in the
number of records being merged, the total merge time is obtained by summing the prod-
ucts of the run lengths and the distance from the root of the corresponding external
nodes. This sum is called the weighted external path length. For the two trees of Figure
7.26, the respective weighted external path lengths are

2:3+4-345-2+15-1=43
and
2:2+4-2+42+5-2+15-2=52

The cost of a k-way merge of n runs of length g¢;, } <7 < n, is minimized by using a
merge tree of degree &'that has minimum weighted external path length. We shall con-
sider the case k£ = 2 only. The discussion is easily generalized to the case k > 2 (see the
exercises),
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We briefly describe another application for binary trees with minimum weighted
external path length. Suppose we wish to obtain an optimal set of codes for messages
M,, -+, M,.,. Each code is a binary string that will be used for transmission of the
corresponding message. At the receiving end the code will be decoded using a decode
tree. A decode tree is a binary tree in which external nodes represent messages. The
binary bits in the code word for a message determine the branching needed at each level
of the decode tree to reach the correct external node. For example, if we interpret a zero
as a left branch and a one as a right branch, then the decode tree of Figure 7.27
corresponds to codes 000, 001, 01, and 1 for messages M, M,, M;, and M,, respec-
tively. These codes are called Huffinan codes. The cost of decoding a code word is pro-
portional to the number of bits in the code. This number is equal to the distance of the
corresponding external node from the root node. If g; is the relative frequency with
which message M; will be transmitted, then the expected decoding time is

Y g4

1<izn+1

where d; is the distance of the external node for message M; from the root node. The
expected decoding time is minimized by choosing code words resulting in a decode tree
with minimal weighted external path length.

Figure 7.27: A decode tree

A very mice solution to the problem of finding a binary tree with minimum
weighted external path length has been given by D. Huffinan. We simply state his algo-
rithm and leave the correctness proof as an exercise. The following type declarations are
assumed:



typedef struct treeNode *tree—pointer;
typedef struct {
treePointer leftChild;
int weight;
treePointer rightChild;
} treeNode;

The huffinan function (Program 7.21) begins with n extended binary trees, each
containing one node. These are in the array heap []. Each node in a tree has three fields:
weight, left—child, and right-child. The single node in each of the initial extended
binary trees has as weight of one of the ¢;’s. During the course of the algorithm, for any
tree in heap with root node free and depth greater than 1, tree — weight is the sum of the
weights of all external nodes in the tree rooted at free. The Auffinan function uses the
min heap functions push, pop, and initialize; push adds a new element to the min heap,
pop deletes and returns the element with minimum weight, and initialize initializes the
min heap. As discussed in Section 7.6, a heap can be initialized in linear time.

- void huffman(treePointer heap(], int n)

{/* heap[l:n] is a list of single-node binary trees */
treePointer tree;
int i;
/* initialize min heap */
initialize{heap, n};
/* create a new tree by combining the trees with the

smallest weights until one tree remains */

for (i = 1; i < n; i++) {
MALLOC (tree, sizeof{*tree)):;
tree —leftChild = pop{&n);
tree—rightChild = pop(&n};
tree—weight = tree—sleftChild—weight +
tree—rightChild—weight;
push(tree, &n); /* add to min heap */

}

Program 7.21: Finding a binary tree with minimum weighted external path length

Example 7.15: Suppose we have the weights ¢; =2, g2 =3,93=5,g4=7, gs =9,
and g = 13. Then the sequence of trees we would get is given in Figure 7.28 (the
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number in a circular node represents the sum of the weights of external nodes in that
subtree).

2 3
(a) (b) ©
39
6 23
9 7 10 13
5 5
2 3
d
(e)

Figure 7.28: Construction of a Huffman tree

The weighted external path length of this tree is
2-4+3-4+5-3+13-24+7-2+4+9-2=93

By comparison, the best complete binary tree has weighted path length 95. O



Analysis of huffinan: Heap initialization takes O(n) time. The main for loop is exccuted
n — 1 times. Each call to push and pop requires only O(log n) time. Hence, the asymp-
totic computing time for the algorithm is G(n log n). O

EXERCISES

1. (a) »n records are to be sorted on a computer with a memory capacity of §
records (§ << n). Assume that the entire S-record capacity may be used for
input/output buffers. The input is on disk and consists of m runs. Assume
that each time a disk access is made, the seek time is £, and the latency time
is #;. The transmission time is # per record transmitted, What is the total
input time for phase two of external sorting if a k-way merge is used with
internal memory partitioned into input/output buffers to permit overlap of
input, output, and CPU processing as in buffering (Program 7.19)?

(b)  Let the CPU time needed to merge all the runs together be f¢py (we may
assume it is independent of & and hence constant). Let ¢, = 80 ms, t; = 20ms,
n = 200,000, m = 64, 1, = 107 sec/record, and § = 2000. Obtain a rough
plot of the total input time, ¢,,,,, versus k. Will there always be a value of k
for which tcpy = tippu ?
2. (a) Show that function huffinan (Program 7.21) correctly generates a binary tree
of minimal weighted external path length.

(b)  When n runs are to be merged together using an m-way merge, Huffiman’s
method can be generalized to the following mute;: *‘First add
(1 ~n) mod (m — 1) runs of length zero to the set of runs. Then, repeatedly
merge the m shortest remaining runs until onty one run is left.”” Show that
this rule yields an optimal merge pattern for m-way merging.

7.11 REFERENCES AND SELECTED READINGS

A comprehensive discussion of sorting and searching may be found in The Art of Com-
puter Programming: Sorting and Searching, by D. Knuth, Vol. 3, Second Edition,
Addison-Wesley, Reading, MA, 1998,



CHAPTER 8

Hashing

8.1 INTRODUCTION

In this chapter, we again consider the ADT dictionary that was introdaced in Chapter 5
(ADT 5.3). Examples of dictionaries are found in many applications, including the spel-
ling checker, the thesaurus, the index for a database, and the symbol tables generated by
loaders, assemblers, and compilers. When a dictionary with » entries is represented as a
binary search tree as in Chapter 5, the dictionary operations search, insert and delete
take O(n) time. These dictionary operations may be performed in O{log n) time using a
balanced binary search tree (Chapter 10). In this chapter, we examine a technique,
called hashing, that enables us to perform the dictionary operations search, insert and
delete in O(1) expected time. We divide our discussion of hashing into two parts: static
hashing and dynamic hashing.



8.2 STATIC HASHING
8.2.1 Hash Tables

In static hashing the dictionary pairs are stored in a table, Az, called the hash table. The
hash table is partitioned into b buckets, hr[0], - - -, At [b — 1]. Each bucket is capable of
holding s dictionary pairs (or pointers to this many pairs). Thus, a bucket is said to con-
sist of s slots, each slot being large enough to hold one dictionary pair. Usually s = 1,
and each bucket can hold exactly one pair. The address or location of a pair whose key
is k is determined by a hash function, 4, which maps keys into buckets. Thus, for any
key k, h(k} is an integer in the range O through & — 1. h (k) is the hash or home address
of k. Under ideal conditions, dictionary pairs are stored in their home buckets.

Definition: The key density of a hash table is the ratio n /T, where n is the number of
pairs in the table and T is the total number of possible keys. The loading density or load-
ing factor of a hash table is ot = n/(sh). O

Suppose our keys are at most six characters long, where & character may be a
decimal digit or an uppercase letter, and. that the first character is a letter. Then the
number of possible keys is T= ¥ 26 x 36 > 1.6 x 10°. Any reasonable application,

0<igs
however, uses only a very small fraction of these. So, the key density, n /T, is usually
very small. Consequently, the number of buckets, b, which is usually of the same magni-
tude as the number of keys, in the hash table is also much less than 7. Therefore, the
hash function # maps several different keys into the same bucket. Two keys, k;, and &,
are said to be synonyms with respect wo hif h (k) = hk,).

As indicated earlier, under ideal conditions, dictionary pairs are stored in their
home buckets. Since many keys typically have the same home bucket, it is possible that
the home bucket for a new dictionary pair is full at the time we wish to insert this pair
into the dictionary. When this situation arises, we say that an overflow has occurred. A
collision occurs when the home bucket for the new pair is not empty at the time of inser-
tion. When each bucket has 1 slot (i.e., s = 1), collisions and overflows occur simultane-
ously. '

Example 8.1: Consider the hash table /it with b = 26 buckets and s = 2. We have
n = 10 distinct identifiers, each representing a C library function. This table has a load-
ing factor, o, of 10/52 = 0.19. The hash function must map each of the possible
identifiers onto one of the numbers, 0-25. We can construct a fairly simple hash func-
tion by associating the letters, a—z, with the numbers, 0-25, respectively, and then
defining the hash function, f(x), as the first character of x. Using this scheme, the
library functions acos, define, float, exp, char, atan, ceil, floor, clock, and ctime hash
into buckets 0, 3, 5, 4, 2, 0, 2, 5, 2, and 2, respectively. Figurc 8.1 shows the first §
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identifiers entered into the hash table.

Slot0 | Slotl
0 acos atan
1
2 char ceil
3 define
4 exp
5 float floor
6
25

Figure 8.1: Hash table with 26 buckets and two slots per bucket

The identifiers acos and atan are synonyms, as are float and floor, and ceil and
char. The next identifier, clock, hashes into the bucket A7[2]. Since this bucket is full,
we have an overflow. Where in the table should we place clock so that we may retrieve it
when necessary? We consider various solutions to the overflow problem in Section
8230

When no overflows occur, the time required to insert, delete or search using hash-
ing depends only on the time required to compute the hash function and the time to
search one bucket. Hence, the insert, delete and search times are independent of #, the
number of entries in the dictionary. Since the bucket size, s, is usually small (for
internal-memory tables s is usually 1) the search within a bucket is carried out using a
sequential search.

The hash function of Example 8.1 is not well suited for most practical applications
because of the very large number of collisions and resulting overflows that occur. This is
so because it is not unusual to find dictionaries in which many of the keys begin with the
same letter. Ideally, we would like to choose a hash function that is both easy to com-
pute and results in very few collisions. Since the ratio & /7 is usually very small, it is
impossible to avoid collisions altogether. '

In summary, hashing schemes use a hash function to map keys into hash-table
buckets. It is desirable to use a hash function that is both easy to compute and minimizes
the number of collisions. Since the size of the key space is usually several orders of
magnitude larger than the number of buckets and since the number of slots in a bucket is
small, overflows necessarily occur. Hence, a mechanism to handle overflows is needed.



8.2.2 Hash Functions

A hash function maps a key into a bucket in the hash table. As mentioned earlier, the
desired properties of such a function are that it be easy to compute and that it minimize
the number of collisions. In addition, we would like the hash function to be such that it
does not result in a biased use of the hash table for random inputs; that is, if & is a key
chosen at random from the key space, then we want the probability that i (k) = i to be
1/b for all buckets i. With this stipulation, a random key has an equal chance of hashing
into any of the buckets. A hash function satisfying this property is called a uniform hash
Junction.

Several kinds of uniform hash functions are in use in practice. Some of these com-
pute the home bucket by performing arithmetic {e.g., multiplication and division) on the
key. Since, in many applications, the data type of the key is not one for which arithmetic
operations are defined (e.g., string), it is necessary to first convert the key into an integer
(say) and then perform arithmetic on the obtained integer. In the following subsections,
we describe four popular hash functions as well as ways to convert strings into integers.

8.2.2.1 Division

This hash function, which is the most widely used hash function in practice, assumes the
keys are non-negative integers. The home bucket is obtained by using.the modulo (%)
operator. The key & is divided by some number D, and the remainder is used as the home
bucket for k, More formally,

hiky=k% D

This function gives bucket addresses in the range 0 through D -~ 1, so the hash table must
have at least & = D buckets. Although for most key spaces, every choice of D makes k a
uniform hash function, the number of overflows on real-world dictionaries is criticaly
dependent on the choice of D. If D is divisible by two, then odd keys are mapped to odd
buckets (as the remainder is odd), and even keys are mapped to even buckets. Since
real-world dictionaries tend to have a bias toward either odd or even keys, the use of an
even divisor D results in a corresponding bias in the distribution of home buckets. In
practice, it has been found that for real-world dictionaries, the distribution of home
buckets is biased whenever D has small prime factors such as 2, 3, 5, 7 and so on. How-
ever, the degree of bias decreases as the smallest prime factor of D increases. Hence, for
best performance over a variety of dictionaries, you should select D so that it is a prime
number. With this selction, the smallest prime factor of D is D itself. For most practical
dictionaries, a very uniform distribution of keys to buckets is seen even when we choose
D such that it has no prime factor smaller than 20.

When you write hash table functions for general use, the size of the dictionary to
be accommodated in the hash table is not known, This makes it impractical to choose D
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as suggested above. So, we relax the requirement on D even further and require only that
D be odd to avoid the bias caused by an even D. In addition, we set b equal to the divi-
sor D). As the size of the dictionary grows, it will be necessary to increase the size of the
hash table Az dynamically. To satisfy the relaxed requirement on D, array doubling
results in increasing the number of buckets (and hence the divisor D) from b to 2b + 1.

8222 Mid-Square

The mid-square hash function determines the home bucket for a key by squaring the key
and then using an appropriate number of bits from the middle of the square to obtain the
bucket address; the key is assumed to be an integer. Since the middle bits of the square
usually depend on all bits of the key, different keys are expected to result in different
hash addresses with high probability, even when some of the digits are the same. The
number of bits to be used to obtain the bucket address depends on the table size. If r bits
are used, the range of values is 0 through 2'-1. So the size of hash tables is chosen to be
a power of two when the mid-square function is used.

8.2.2.3 Folding

In this method the key & is partitioned into several parts, all but possibly the last being of
the same length. These partitions are then added together to obtain the hash address for
k. There are two ways of carrying out this addition. In the first, all but the last partition
are shifted to the right so that the least significant digit of each lines up with the
corresponding digit of the last partition. The different partitions are now added together
to get ki (k). This method is known as shift folding. Tn the second method, folding ar the
boundaries, the key is folded at the partition boundaries, and digits falling into the same
position are added together to obtain 4 (k). This is equivalent to reversing every other
partition and then adding,

Example 8.2: Suppose that k = 12320324111220, and we partition it into parts that are
three decimal digits long. The partitions are P = 123, P, = 203, Py =241, P, = 112,
and Ps = 20. Using shift folding, we obtain

5
Aiky= Y P;=123+203+241 + 112+ 20 =699
1=1
When folding at the boundaries is used, we first reverse P, and P, to obtain 302 and
211, respectively. Next, the five partitions are added to obtain #(k) = 123 + 302 + 241 +
211 +20=897. O



8.2.24 Digit Analysis

This method is particularly useful in the case of a static file where all the keys in the
table are known in advance. Each key is interpreted as a number using some radix r.
The same radix is used for all the keys in the table. Using this radix, the digits of each
key are examined. Digits having the most skewed distributions are deleted. Enough
digits are deleted so that the number of remaining digits is small enough to give an
address in the range of the hash table.

8225 Converting Keys to Integers

To use some of the described hash functions, keys need to first be converted to nonnega-
tive integers. Since all hash functions hash several keys into the same home bucket, it is
not necessary for us to convert keys into unique nonnegative integers. It is ok for us to
convert the strings data, structures, and algorithms into the same integer (say, 199). In
this section, we consider only thie conversion of strings into non-negative integers. Simi-
lar methods may be used to convert other data types into non-negative integers to which
the described hash functions may be applied.

Example 8.3: [Converting Strings to Integers] Since it is not necessary to convert
strings into unigue nonnegative integers, we can map every string, no matter how long,
into an integer. Programs 8.1 and 8.2 show you two ways to do this.

unsigned int stringTolInt (char *key)
{/* simple additive apprcach to create a natural number
that is within the integer range */
int number = 0;
while {*key)
number += *key++;
return number;

}

Program 8.1: Converting a string into a noh-negative integer

Program 8.1 converts each character into a unique integer and sums these unique
integers. Since each character maps to an integer in the range 0 through 255, the integer
returned by the function is not much more than 8 bits long, For example, strings that are
eight characters long would produce integers up to 11 bits long.

Program 8.2 shifts the integer corresponding to every other character by 8 bits and
then sums. This results in a larger range for the integer returned by the function. O
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-unsigned int stringTolnt (char *keyi
{/* alternative additive approach to create a natural number
that is within the integer range */

“int number = 0;

while (*key)}

{

number += *key++;
if {*key) number += {(int) *key++) << 8;
}
return number;

}

Program 8.2: Alternative way to convert a string into a non-negative integer

8.2.3 Overflow Handling

" 8.23.1 Open Addressing

There are two popular ways to handle overflows: open addressing and chaining. In this
section, we describe four open addressing methods—linear probing, which also is known
as linear open addressing, quadratic probing, rehashing and random probing. In linear
probing, when inserting a new pair whose key is k, we search the hash table buckets in
the order, ht[h{k)+i] % b, 0<i<h — 1, where % is the hash function and # is the
number of buckets. This search terminates when we reach the first unfilled bucket and
the new pair is inserted into this bucket. In case no such bucket is found, the hash table is
full and it is necessary to increase the table size. In practice, to ensure good perfor-
mance, table size is increased when the loading density exceeds a prespecified threshold.
such as 0.75 rather than when the table is full. Notice that when we resize the hash table,
we must change the hash function as well. For example, when the division hash function
is used, the divisor equals the number of buckets. This change in the hash function
potentially changes the home bucket for each key in the hash table, So, all dictionary
entries need to be remapped into the new larger table.

Example 8.4: Assume we have a 13-bucket table with one slot per bucket. As our data
we use the words for, do, while, if. else, and function. Figure 8.2 shows the hash value
for each word using the simplified scheme of Program 8.1 and the division hash function.
Inserting the first five words into the table poses no problem since they have different
hash addresses. However, the last identifier, function, hashes to the same bucket as if.
Using a circular rotation, the next available bucket is at fr [0}, which is where we place
function (Figure 8.3). O



Identifier | Additive x Hash
Transformation
for 102+ 111 + 114 327 2
do 100+ 111 211 3
while 119 + 104 + 105 + 108 + 101 537 4
if 105 + 102 207 12
else 101 + 108 + 115 + 101 425 9
qunction 102 + 117 + 110 + 99_f T NE 41 F 171770 870 12

Figure 8.2: Additive transformation

| 0] “netion

do
4] while
[5]
[6]
17}
[8]
[91 else
[10]
[11]
[12] if

Figure 8.3: Hash table with linear probing (13 buckets, one slot pcr’

When s = 1 and linear probing is used to handle overflows, a ...
the pair with key & proceeds as follows:

{1y Compute ki (k).
{2) Examine the hash table buckets in the order ht[A(k)], At[(h(k)+ 1) % b], - -,
ht [(h (k) + j) % b] until one of the following happens:
{a) The bucket ht [(A(k) + j) % b ] has a pair whose key is &; in this case, the
desired pair has been found.
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(b)  hrlh(k) + j]is empty; & is not in the table.

(c) We return to the starting position At [k (k)]; the table is full and k is not in
the table.

Program 8.3 is the resulting search function. This function assumes that the hash table At
stores pointers to dictionary pairs. The data type of a dictionary pair is element and data
of this type has two componenets item and key.

element* search(int k)

{/* search the linear probing hash table ht (each bucket has
exactly one slot) for k, if a pair with key k is found,
return a pointer to this pair; otherwise, return NULL */
int homeBucket, currentBucket;
homeBucket = h(k);
for (currentBucket = homeBucket; ht[currentBucket]

&& htfcurrentBucketl->key '= k;) {
currentBucket = (currentBucket + 1) % b;
/* treat the table as circular */
if (currentBucket == homeBuket)

return NULL; /* back te start point */
}
if (ht[currentBucket]->key == k)
return ht[currentBucket];
return NULL;

Program 8.3: Linear probing

When linear probing is used to resolve overflows, keys tend to cluster together.
Moreover, adjacent clusters tend 1o coalesce, thus increasing the search time. For exam-
ple, suppose we enter the C built-in functions acos, atoi, char, define, exp, ceil, cos,
float, atol, floor, and ctime into a 26-bucket hash table in that order. For illustrative pur-
poses, we assume that the hash function uses the first character in each function name.
Figure 8.4 shows the bucket number, the identifier contained in the bucket, and the
number of comparisons required to insert the identifier. Notice that before we can insert
atol, we must examnine Az [0}, ..., i8], a total of nine comparisons. This is far worse
than the worst case behavior of the search trees we will study in Chapter 10. If we
retrieved each of the identifiers in At exactly once, the average number of buckets exam-
ined would be 35/11 = 3.18 per identifier.

When linear probing is used together with a uniform hash hash functlon the
expected average number of key comparisons to look up a key is approximately
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Figure 8.4: Hash table with linear probing (26 buckets, one slot per bucket)

(2 — A2 — 2ar), where a is the loading density. This is the average over all possible
sets of keys yielding the given loading density and using a uniform function 4. In the
example of Figure 8.4, o = 11/26 = 42 and p = 1.36. This indicates that the expected
average number of comparisons to search a table with a loading density of .42 is 1.36..
Even though the average number of comparisons is small, the worst case can be quite
large.

Some improvement in the growth of clusters and hence in the average number of
comparisons needed for searching can be obtained by guadratic probing. Linear probing
- was characterized by searching the buckets (h(k) + i) % b, 0<i <b — |, where b is the
number of buckets in the table. In quadratic probing, a quadratic function of ; is used as
the increment. In particular, the search is carried out by examining buckets
hk), (h(k)+i%) % b, and (h(k)—i%) % b for 1<i<(b—1)/2. When b is a prime
number of the form 45 + 3, for j an integer, the quadratic search described above exam-
ines every bucket in the table, Figure 8.5 lists some primes of the form 4j + 3.

An alternative method to retard the growth of clusters is to use a series of hash
functions h,, h,, ' *, h,. This method is known as rehashing. Buckets hi(k), 1 £i<m
are examined in that order. Yer another alternative, random probing, is explored in the
exercises.
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Prime | j || Prime j
3 0 43 10
7 1 59 14
11 2 127 31
19 4 251 62
23 5 503 125
31 7 1019 254

Figure 8.5: Some primes of the form 4j + 3

8.2.3.2 Chaining

Linear probing and its variations perform poorly because the search for a key involves
comparison with keys that have different hash values. In the hash table of Figure 8.4, for
instance, searching for the key atol involves comparisons with the buckets Az [0] through
ht [8], even though only the keys in Ar[0] and Az [1] had a collision with with atol; the
remainder cannot possibly be atel. Many of the comparisons can be saved if we main-
tain lists of keys, one list per bucket, each list containing all the synonyms for that
bucket. If this is done, a search involves computing the hash address /£ (k) and examin-
ing only those keys in the list for (k). Although the list for & (£) may be maintained
using any data structure that supports the search, insert and delete operations (e.g.,
arrays, chains, search trees), chains are most frequently used. We typically use an array
At [0:b—1] with Az [i] pointing to the first node of the chain for bucket i{. Program 8.4
gives the search algorithm for chained hash tables.

Figure 8.6 shows the chained hash table corresponding to the linear table found in
Figure 8.4. The number of comparisons needed to search for any of the identifiers is now
one each for aces, char, define, exp and float; two each for atoi, ceil, and float; three
each for atol and cos; and four for ctime. The average number of comparisons is now
21/11=1.91. :

To insert a new key, k, into a chain, we must first verify that it is not currently on
the chain. Following this, £ may be inserted at any position of the chain. Deletion from
a chained hash table can be done by removing the appropriate node from its chain.

When chaining is used along with a uniform hash function, the expected average
number of key comparisons for a successful search is = 1 + ¢/2, where & is the loading
density n/b (b = number of buckets). For o = 0.5 this number is 1.25, and for o = 1 it is
1.5. The corresponding numbers for linear probing are 1.5 and b, the table size.

The performance results cited in this section tend to imply that provided we use a
uniform hash function, performance depends only on the method used to handle



element* search(int k)

{/* search the chained hash table ht for k, if a pair with
this key is found, return a pointer to this pair;
otherwise, return NULL.
nodePointer current;
int homeBucket = hik};

/* search the chain ht [homeBucket] */
for (current = htl[homeBucket]; current;
current = current—link)
if {current—data.key == k} return &current-—data;
return NULL;
}

Program 8.4: Chain search

[0] — acos atoi atol
{11-> NULL

[2] — char ceil cos ctime
{3] — define

4] = exp

[5] — float floor

6] > NULL

{25} - NULL

Figure 8.6: Hash chains corresponding to Figure 8.4

overflows. Although this is true when the keys are selected at random from the key
space, it is not true in practice. In practice, there is a tendency to make a biased use of
keys. Hence, in practice, different hash functions result in different performance. Gen-
erally, the division hash function coupled with chaining yields best performance.

The worst-case number of comparisons needed for a successful search remains
O(n) regardless of whether we use open addressing or chaining. The worst-case number
of comparisons may be reduced to Oflogn) by storing synonyms in a balanced search
tree (see Chapter 10) rather than in a chain.
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8.2.4 Theoretical Evaluation of Overflow Techniques

The experimental evaluation of hashing techniques indicates a very good performance
over conventional techniques such as balanced trees. The worst-case performance for
hashing can, however, be very bad. In the worst case, an insertion or a search in a hash
table with » keys may take O(n) time. In this section, we present a probabilistic analysis
for the expected performance of the chaining method and state without proof the results
of similar analyses for the other overflow handling methods. First, we formalize what
we mean by expected performance.

Let At [0: & — 1] be a hash table with b buckets, each bucket having one slot. Let k&
be a uniform hash function with range [0, & —1]. If n keys kq, ka, - -, k, are entered
into the hash table, then there are b” distinct hash sequences h(k ), h(ks), -- -, h(k,).
Assume that each of these is equally likely to occur. Let §, denote the expected number
of key comparisons needed to locate a randomly chosen &;, 1 <i<n. Then, S, is the
average number of comparisons needed to find the jth key k;, averaged over 1 <j <n,
with each j equally likely, and averaged over all b" hash sequences, assuming each of
these also to be equally likely. Let U, be the expected number of key comparisons when
a search is made for a key not in the hash table. This hash table contains n keys. The
quantity U/, may be defined in a manner analogous to that used for §,,.

Theorem 8.1: Let a = n/b be the loading density of a hash table using a uniform hash-
ing function h. Then

(1) for linear open addressing

Uy z% [1+ (I—]on)2 ]

| 1 ]
S.= 1+
& 2 [ 1-o
{2) for rehashing, random probing, and quadratic probing
U, = 11—

Se=— [é] log, (1-a)

(3) for chaining
U,=a
S, =1+ a2

Proof: Exact derivations of U, and §, are fairly involved and can be found in Knuth's
book The Art of Computer Programming: Sorting and Searching (see the References and



Selected Readings section). Here we present a derivation of the approximate formulas
for chaining. First, we must make clear our count for U, and 5,. If the key & being
sought has (k) = i, and chain { has g nodes on it, then g comparisons are needed if k is
not on the chain. If & is in the jth node of the chain, 1 £ <g, then j comparisons are
needed.

When the n keys are distributed uniformly over the & possible chains, the expected
number in each chain is n/k = a. Since U, equals the expected number of keys on a
chain, we get U, = a.

When the ith key, k;, is being entered into the table, the expected number of keys
on any chain is (i — 1¥b. Hence, the expected number of comparisons needed to search
for k; after ali n keys have been entered is 1 + (i — 1)/b (this assumes that new entries
will be made at the end of the chain). Thus,

n-1 o

1s : R Sl I
S,,-n):{1+(1v1)/b]_1+ - 1+2

a

i=1
EXERCISES

1. Show that the hash function & (k) = k % 17 does not satisfy the one-way property,
weak collision resistance, or strong collision resistance.

2. Consider a hash function & ¢k )=k % [, where 1 is not given. We want to figure
out what value of D is being used. We wish to achieve this using as few attempts
as possible, where an aticmpt consists of supplying the function with &£ and
observing £ (k). Indicate how this may be achieved in the following two cases.

(a} .Dis known to be a prime number in the range [10,20].
(b) D is of the form 2, where k is an integer in [1,5].

3. Write a function to delete the pair with key & from a hash table that uses linear
probing. Show that simply setting the slot previously occupied by the deleted pair
to empty does not solve the problem. How must Ger (Program 8.3) be moditied so
that a correct search is made in the situation when deletions are permitted? Where
can a new key be inserted?

4, {a2) Show that if quadratic searching is carried out in the sequence (h (k) + qz),

(h) + (g~ D), -, (h(kY+ 1), h(k), (BkY - 1), *+, (h(k) ~¢") with
g = (b —1)/2, then the address difference % b between successive buckets
being examined is

b-2,b-4,b-6,...,53, 1,135 ..,b-6b—-4,b-2
(b) Write a function to search a hash. table At of size b for the key k. Use h as

the hash function and the quadratic probing scheme discussed in the text to
resolve overflows. Use the results of part (a) to reduce the computations.
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5. [Morris 1968] In random probing, the search for a key, %, in a hash table with b
buckets is carried out by examining the buckets in the order h(k),
(h{k) +5())% b, 1 i< b~1 where 5(i) is a pseudo random number. The ran-
dom number generator must satisfy the property that every number from 1 to b — 1
must be generated exactly once as i ranges from 1 o b~ 1.

(a) Show that for a table of size 27, the following sequence of computations
generates numbers with this property:

Initialize g to 1 each time the search routine is called.
On successive calls for a random number do the following:

g*=35
g =low order r + 2 bits of g
s(i)=qg/4

(b)  Write search and insert functions for a hash table using random probing and
the mid-square hash function. Use the random number generator of (a).

It can be shown that for this method, the expected value for the average number of
comparisons needed to search for a dictionary pair is ~(1/a)log(l — o) for large
tables (o is the loading factor).

6. Develop a hash table implementation in which overflows are resolved using a
binary search tree. Use the division hash function with an odd divisor D and array
doubling whenever the loading density exceeds a prespecified amount. Recall that
in this context, array doubling actually increases the size of the hash table from its
current size b = Dto 26 + 1.

7. Write a function to list all the keys in a hash table in lexicographic order. Assume
that linear probing is used. How much time does your function take?

8. Let the binary representation of key & be kk,. Let|¢|denote the number of bits in
k and let the first bit of k; be 1. Let ik, = [|k|/2] and|k4| = | |k|/2]. Consider
the following hash function

Ak (k) = middle g bits of (k| @ k;)

where @ is the exclusive-or operator. Js this a uniform hash function if keys are
drawn at randem from the space of integers? What can you say about the behavior
of this hash function in actual dictionary usage?

9. [T Gonzalez] Design a dictivnary representation that allows you to search, insert,
and delete in O(1) time. Assume that the keys are integer and in the range [0, m)
and that m + n units of space are available, where r is the number of insertions to
be made. (Hint: Use two arrays, a[n] and b [m], where a[i] will be the (/ +1)th
pair inserted into the table. If & is the ith key inserted, then b[k] =i.) Write C++
functions to search, insert, and delete. Note that you cannot initialize the arrays a



and b as this would take O{n + m) time.

10. [T. Gonzalez] Let s = {51,582, ", 5,) and t = {#;, 15, -+, ¢} be two sets.
Assume 1 <5, <m, 1 £i <n,and 1 £¢; <m, | £i <r. Using the idea of Exercise 9,
write a function to determine if s  ¢. Your function should work in O{r + n) time.
Since s = tiff s © rand 1 C 5, one can determine in linear time whether two sets are
the same. How much space is needed by your function?

11. [T. Gonzalez] Using the idea of Exercise 9, write an O(n + m) time function to
carry out the task of Verify2 (Program 7.3). How much space does vour function
need?

12. Using the notation of Section 8.2.4, show that when linear probing is used

n-1
Sn = Z Ui
=0

I E

Using this equation and the approximate equality

1

+ ————] where o = z
(1 -o)? b

> |
U,=_ |1
"2

show that

S":%[]Jr (lia)]

8.3 DYNAMIC HASHING
8.3.1 Motivation for Dynamic Hashing

To ensure good performance, it is necessary to increase the size of a hash table whenever
its loading density exceeds a prespecified threshold. So, for example, if we currently
have b buckets in our hash table and are using the division hash function with divisor
D = b, then, when an insert causes the loading density to exceed the prespecified thres-
hold, we use array doubling to increase the number of buckets to 2b + 1. At the same
time, the hash function divisor changes to 2b + 1. This change in divisor requires us o
rebuild the hash table by collecting all dictionary pairs in the original smaller size table
and reinserting these into the new larger table. We cannot simply copy dictionary entries
from the smaller table into corresponding buckets of the bigger table as the home bucket
for each entry has potentially changed. For very large dictionaries that must be accessi-
ble on a 24/7 basis, the required rebuild means that dictionary operations must be
suspended for unacceptably long periods while the rebuild is in progress. Dynamic
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hashing, which also is known as extendible hashing, aims to reduce the rebuild time by
ensuring that each rebuild changes the home bucket for the entries in only 1 bucket. In
other words, although table doubling increases the total time for a sequence of n diction-
ary operations by only O(n), the time required to complete an insert that triggers the dou-
bling is excessive in the context of a large dictionary that is required to respond quickly
on a per operation basis. The objective of dynamic hashing is to provide acceptable hash
table performance on a per operation basis.

We consider two forms of dynamic hashing—one uses a directory and the other
does not—in this section. For both forms, we use a hash function /# that maps keys into
non-negative integers. The range of A is assumed to be sufficiently large and we use
h(k.p) to denote the integer formed by the p least significant bits of i (k).

For the examples of this section, we use a hash function £ (k) that transforms keys
into 6-bit non-negative integers. Qur example keys will be two characters each and A
transforms letiers such as A, B and C into the bit sequence 100, 101, and 110, respec-
tively. Digits 0 through 7 are transformed into their 3-bit representation. Figure 8.7
shows 8 possible 2 character keys together with the binary representation of & (k) for
each. For our example hash function, h(40,1) =0, h(A1,3) =1, A(B1.4) = 1001 = 9,
and h{C1,6)= 110001 = 49.

k h(k)

AQ | 100000
Al | 100001
BO | 101 000
B1 101 00t
Ct | 110001
C2 [ 110010
C3 | 110011
C5 | 110101

Figure 8.7: An example hash function

8.3.2 Dynamic Hashing Using Directories

We employ a directory, d, of pointers to buckets. The size of the directory depends on
the number of bits of # (k) used to index into the directory. When indexing is done using,
say, h (k, 2), the directory size is 22 = 4; when k(k, 5) is used, the directory size is 32.
The number of bits of & (k) used to index the directory is called the directory depth. The



size of the directory is 2/, where ¢ is the directory depth and the number of buckets is at
most equal to the directory size. Figure 8.8 (a) shows a dynamic hash table that contains
the keys AQ, B0, A1, B1; C2, and C3. This hash table uses a directory whose depth is 2
and uses buckets that have 2 slots each. In Figure 8.8, the directory is shaded while the
buckets are not. In practice, the bucket size is often chosen to match some physical
characteristic of the storage media. For example, when the dictionary pairs reside ‘on
disk, a bucket may correspond to a disk track or sector.

001
010 [
011 ok
100 EFd
101 |
110 (]
11 g

0001
0010
0011
0100
0101
0110 F
o111 |
1000
1001
1010
1011
1100
1101
1110
1111

(a) depth =2 (b)depth =3 (c) depth=4

Figure 8.8: Dynamic hash tables with directories

To search for a key k, we merely examine the bucket pointed to by d[h(k,1)],
where ¢ is the directory depth.
Suppose we insert C5 into the hash table of Figure 8.8 (a). Since, A(C5,2) = 01,
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we follow the pointer, d[01], in position 01 of the directory. This gets us to the bucke:
with Al and B1. This bucket is full and we get a bucket overflow, To rtesolve th:
overflow, we determine the least u such that k (k,u) is not the same for all keys in the
overflowed bucket. In case the least u is greater than the directory depth, we increase the
directory depth to this least « value. This requires us to increase the directory size but
not the number of buckets. When the directory size doubles, the pointers in the original
directory are duplicated so that the pointers in each half of the directory are the same. A
quadrupling of the directory size may be handled as two doublings and so on. For our
example, the least u for which A (k1) is not the same for Al, BI, and C5 is 3. So, the
directory is expanded to have depth 3 and size 8. Following the expansion, d[i] =
dli +4],0<i <4

Following the resizing (if any) of the directory, we split the overflowed bucket
using h(k,u). In our case, the overflowed bucket is split using 2 (k, 3). For Al and BI,
h(k, 3) =001 and for C5, k(k, 3) = 101. So, we create a new bucket with C5 and place a
pointer to this bucket in £[101]. Figure 8.8 (b) shows the result. Notice that each dic-
tionary entry is in the bucket pointed at by the directory position A (%, 3), although, in
some cases the dictionary entry is also pointed at by other buckets. For example, bucket
100 also points to AO and B0, even though A (A 0,3) = 4 (80,3) # 000.

Suppose that instead of C5, we were to insert C1. The pointer in position £(C1,2)
= 01 of the directory of Figure 8.8 (a) gets us to the same bucket as when we were insert-
ing C5. This bucket overflows. The least u for which & (k,u) isn't the same for Al, Bl
and C1 is 4. So, the new directory depth is 4 and its new size is 16, The directory size is
guadrupled and the pointers d {0:3] are replicated 3 times to fill the new directory. When
the overflowed bucket is split, Al and C1 are placed into a bucket that is pointed at by
d{0001] and B1 into a bucket pointed at by d[1001].

When the current directory depth is greater than or equal to u, some of the other
pointers to the split bucket also must be updated to point to the new bucket. Specifically,
the pointers in positions that agree with the last # bits of the new bucket need to be
updated. The following example iliustrates this. Consider inserting A4 (h(A4) = 100
100} into Figure 8.8 (b). Bucket d[100] overflows. The least « is 3, which equals the
directory depth.” So, the size of the directory is not changed. Using A (k, 3), A0 and BO
bhash to 000 while A4 hashes to 100. So, we create a new bucket for A4 and set d[100] to
point to this new bucket.

As a final insert example, consider inserting C1 into Figure 8.8 (b). A(C1,3) =
001. This time, bucket d[001] overflows. The minumum « is 4 and so it is necessary to
double the directory size and increase the directory depth to 4. When the directory is
doubled, we replicate the pointers in the first half into the second half. Next we split the
overflowed bucket using & (k, 4). Since A (k, 4) = 0001 for Al and C1 and 1001 for B,
we create a new bucket with Bl and put C1 into the slot previously occupied by Bl. A
pointer to the new bucket is placed in 4[1001]). Figure 8.8 (c) shows the resulting
configuration. For clarity, several of the bucket pointers have been replaced by lower-
case letters indicating the bucket pointed to.



Deletion from a dynamic hash table with a directory is similar to insertion.
Although dynamic hashing employs array doubling, the time for this array doubling is
considerably less than that for the array doubling used in static hashing. This is so
because, in dynamic hashing, we need to rehash only the entries in the bucket that
overflows rather than all entries in the table. Further, savings result when the directory
resides in memory while the buckets are on disk. A search requires only 1 disk access; an
insert makes 1 read and 2 write accesses to the disk, the array doubling requires no disk
access.

8.3.3 Directoryless Dynamic Hashing

As the name suggests, in this method, which also is known as linear dynamic hashing,
we dispense with the directory, d, of bucket pointers used in the method of Section 8.3.2.
Instead, an array, ht, of buckets is used. We assume that this array is as large as possible
and so there is no possibility of increasing its size dynamically. To avoid initializing
such a large array, we use two variables g and r, 0 < g < 27, to keep track of the acrive
buckets. At any time, only buckets O through 2" + g — | are active. Each active bucket
is the start of a chain of buckets. The remaining buckets on a chain are catled overflow
buckets. Informally, r is the number of bits of h (k) used to index into the hash table and
g is the bucket that will split next. More accurately, buckets 0 through ¢ — 1 as well as
buckets 27 through 2" + g — 1 are indexed using h (k, r + 1) while the remaining active
buckets are indexed using h(k, r). Each dictionary pair is either in an active or an
overflow bucket.

Figure 8.9 (a) shows a directoryless hash table At with r = 2 and g = 0. The hash
function is that of Figure 8.7, A(B4) = 101 100, and A (B5) = 101 101. The number of
active buckets is 4 (indexed 00, 01, 10, and 11). The index of an active bucket identifies
its chain. Each active bucket has 2 slots and bucket (0 contains B4 and A0. There are 4
bucket chains, each chain begins at one of the 4 active buckets and comprises only that
active bucket (i.e., there are no overflow buckets). In Figure 8.9 (a), all keys have been
mapped into chains using A(k, 2). In Figure 89 (b), r=2 and ¢ = 1; A (%, 3) has been
used for chains 000 and 100 while i (k, 2) has been used for chains 001, 010, and 011.
Chain 001 has an overflow bucket; the capacity of an overflow bucket may or may not be
the same as that of an active bucket.

To search for k, we first compute h(k,r). If h(k,r) < g, then k, if present, is in a
chain indgxed using A (k, r + 1). Otherwise, the chain to examine is given by h(k, r).
Program 8.5 gives the algorithm to search a directoryless dynamic hash table.

To insert C5 into the table of Figure 8.9 (a), we use the search algorithm of Pro-
gram 8.5 to determine whether or not C5 is in the table already. Chdin 01 is examined
and we verify that C5 is not present. Since the active bucket for the searched chain is
full, we get an overflow. An overflow is handled by activating bucket 2" + g; reallocat-
ing the entries in the chain g between g and the newly activated bucket (or chain) 2" + g,

1
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if (i (k,r) < q) search the chain that begins at bucket A (k,r +1);
else search the chain that begins at bucket h {k,r);

Program 8.5: Searching a directoryless hash table

and incrementing ¢ by 1. In case g now becomes 27, we increment by 1 and reset g to
0. The reallocation is done using #(k, r + 1). Finally, the new pair is inserted into the
chain where it would be searched for by Program 8.5 using the new r and g values.

For our example, bucket 4 = 100 is activated and the entries in chain 00 (g = 0) are
rehashed using r + 1| = 3 bits. B4 hashes to the new bucket 100 and AO to bucket 000.
Following this, ¢ = 1 and r = 2. A search for C5 would examine chain 1 and so C5 is
added to this chain using an overflow bucket (see Figure 8.9 (b)). Notice that at this
time, the keys in buckets 001, 010 and 011 are hashed using 4 (k, 2) while those in buck-
ets 000 and 100 are hashed using A (k, 3).

B4 AD overflow A0 |
00 A0 000 } bucket 000 )
Al Al &] Al
1 C5 001
o1 BS 00 B5 Cl
C2 C2 C2
10 010 010
3 Cc3 C3
11 C 011 (1301
B4 B4 |
100 new active 100
B bucket -
B5 )
101 new active
C5 bucket
@r=2,g=0 (M) Insert C5,r=2,9g=1 (©)InsertCl,r=2,g=2

Figure 8.9: Inserting into a directoryless dynamic hash table



Let us now insert C1 into the table of Figure 8.9 (b). Since, A(C1,2) = 0i = g,
chain 01 = 1 is examined by our search algorithm (Program 8.5). The search verifies that
C1 is not in the dictionary. Since the active bucket 01 is full, we get an overflow. We
activate bucket 2" + ¢ = 5 = 101 and rehash the keys Al, B5, and C5 that are in chain g.
The rehashing is done using 3 bits. Al is hashed into bucket 001 while B3 and C5 hash
into bucket 101. g is incremented by 1 and the new key C1 is inserted into bucket 001.
Figure 8.9 (c) shows the result.

EXERCISES

1. Write an algorithm to insert a dictionary pair into a dynamic hash table that uses a
directory.

2, Write an algorithm to delete a dictionary pair from a dynamic hash table that uses
a directory.

3. Write an algorithm to insert a dictionary pair into a directoryless dynamic hash
table.

4. Write an algorithm to delete a dictionary pair from a directoryless dynamic hash
table.

84 BLOOM FILTERS

8.4.1 An Application—Differential Files

Consider an application where we are maintaining an indexed file. For simplicity,
assume that there is only one index and hence just a single key. Further assume that this
is a dense index (i.e., one that has an entry for each record in the file) and that updates to
the file (inserts, deletes, and changes to an existing record) are permitted. It is necessary
to keep a backup copy of the index and file so that we can recover from accidental loss
or failure of the working copy. This loss or failure may occur for a variety of reasons,
which include corruption of the working copy due to a malfunction of the hardware or
software. We shall refer to the working copies of the index and file as the master index
and master file, respectively.

Since updates to the file and index are permitted, the backup copies of these gen-
erally differ from the working copies at the time of failure. So, it is possible to recover
from the failure only if, in addition to the backup copies, we have a log of all updates
made since the backup copies were created. We shall call this log the transaction log.
To recover from the failure, it is necessary to process the backup copies and the transac-
tion log to reproduce an index and file that correspond to the working copies at the time
of failure. The time needed to recover is therefore a function of the sizes of the backup
index and file and the size of the transaction log. The recovery time can be reduced by
making more frequent backups. This results in a smaller transaction log. Making
sufficiently frequent backups of the master index and file is not practical when these are
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very large and when the update rate is very high.

When only the file (but not the index) is very large, a reduction in the recovery
time may be obtained by keeping updated records in a separate file called the differential
file. The master file is unchanged. The master index is, however, changed to reflect the
position of the most current version of the record with a given key. We assume that the
addresses for differential-file records and master-file records are different. As a result, by
examining the address obtained from a search of the master index, we can tell whether
the most current version of the record we are seeking is in the master file or in the
differential fite. The steps to follow when accessing a record with a given key are given
in Program 8.6(b). Program 8.6(a) gives the steps when a differential file is not used.

Notice that when a differential file is used, the backup file is an exact replica of the
master file. Hence, it is necessary to backup only the master index and differential file
frequently. Since these are relatively small, it is feasible to do this. To recover from a
failure of the master index or differential file, the transactions in the transaction log need
to be processed using the backup copies of the master file, index, and differential file.
The transaction log can be expected to be relatively small, as backups are done more fre-
quently. To recover from a failure of the master file, we need merely make a new copy
of its backup. When the differential file becomes too large, it is necessary to create a
new version of the master file by merging the old master file and the differential file.
This also results in a new index and an empty differential file. It is interesting to note
that using a differential file as suggested does not affect the number of disk accesses
needed to perform a file operation (see Program 8.6(a,b)).

Suppose that both the index and the file are very large. In this case the
differential-file scheme discussed above does not work as well, as it is not feasible to
backup the master index as frequently as is necessary to keep the transaction log
sufficiently small. We can get around this difficulty by using a differentiat file and a
differential index. The master index and master file remain unchanged as updates are
performed. The differential file contains all newly inserted records and the current ver-
sions of all changed records. The differential index is an index to the differential file.
This also has null address entries for deleted records. The steps needed to perform a file
operation when both a differential index and file are used are given in Program 8.6(c).
Comparing with Program 8.6(a), we see that additional disk accesses are frequently
needed, as we will often first query the differential index and then the master index.
Observe that the differential file is much smaller than the master file, so most requests are
satisfied from the master file.

When a differential index and file are used, we must backup both of these with
high frequency. This is possible, as both are relatively small. To recover from a loss of
the differential index or file, we need to process the transactions in the transaction log
using the available backup copies. To recover from a loss of the master index or master
file, a copy of the appropriate backup needs to be made. When the differential index
and/or file becomes too large, the master index andfor file is reorganized- so that the
differential index and/or file becomes empty.



Step 1:  Search master index for record address.

Step 2:  Access record from this master file address.

Step 3:  If this is an update, then update master index, master file, and transaction log.
{a) No differential file

Step 1:  Search master index for record address.

Step 2:  Access record from either the master file or the differential file, depending on
the address obtained in Step 1.

Step 3:  If this is an update, then update master index, differential file, and transaction
log.

(b) Differential file in use

Step 1: Search differential index for record address. If the search is unsuccessful,
then search the master index.

Step 2:  Access record from either the master file or the differential file, depending on
the address obtained in Step 1.

Step 3:  If this is an update, then update differential index, differential file, and
transaction log.

(¢) Differential index and file in use

Step 1:  Query the Bloom filter. If the answer is ‘‘maybe,”’ then search differential
index for record address. If the answer is “‘no’’” or if the differential index
search is unsuccessful, then search the master index.

Step2:  Access record from either the master file or the differential file, depending on
the address obtained int Step 1.

Step 3:  If this is an update, then update Bloom filter, differential index, differential
file, and transaction log.

{d) Differential index and file and Bloom filter in use

Program 8.6: Access steps

8.4.2 Bloom Filter Design

The performance degradation that results from the use of a differential index can be con-
siderably reduced by the use of a Bloom filter. This is a device that resides in internal
memory and accepts queries of the following type: Is key & in the differential index? If
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queries of this type can be answered accurately, then there will never be a need to search
both the differential and master indexes for a record address. Clearly, the only way to
answer queries of this type accurately is to have a list of all keys in the differential index.
This is not possible for differential indexes of reasonable size.

A Bloom filter does not answer queries of the above type accurately. Instead of
returning one of “‘yes’” and “‘no” as its answer, it returns one of “‘maybe’’ and *‘no’’.
When the answer is ‘*no,”” then we are assured that the key & is not in the differential
index. In this case, only the master index is to be searched, and the number of disk
accesses is the same as when a differential index is not used. If the answer is *‘maybe,”’
then the differential index is searched. The master index needs to be searched only if k is
not found in the differential index. Program 8.6(d) gives the steps to follow when a
Bloom filter is used in conjunction with a differential index.

A filter error occurs whenever the answer to the Bloom filter query is ‘‘maybe’”
and the key is not in the differential index. Both the differential and master indexes are
searched only when a filter error occurs. To obtain a performance close to that when a
differential index is not in use, we must ensure that the probability of a filter error is
close to zero.

Let us take a look at a Bloom filter, Typically, it consists of m bits of memory and
h uniform and independent hash functions f;, - --, f,. Each f; hashes a key £ to an
integer in the range [1.m]. Initially all m filter bits are zero, and the differential index
and file are empty. When key £ is added to the differential index, bits f,(k), - - -, fu(k) of
the filter are set to 1. When a query of the type “‘Is key k in the differential index?”’ is
made, bits f1(k), - - -, f(k) are examined. The query answer is ‘*maybe’’ if all these bits
are 1. Otherwise, the answer is “‘no.”” One may verify that whenever the answer is
“no,”" the key cannot be in the differential index and that when the answer is ‘‘maybe,”’
the key may or may not be in the differential index.

We can compute the probability of a filter error in the following way. Assume that
initially there are n records and that # updates are made. Assume that none of these is an
insert or a delete. Hence, the number of records remains unchanged. Further, assume
that the record keys are uniformly distributed over the key space and that the probability
that an update request is for record i is 1/n, 1 £ < n. From these assumptions, i follows
that the probability that a particular update does not modify record ¢ is 1—1/. So, the
probability that none of the u updates medifies record i is (1-1/r)“. Hence, the
expecied number of unmodified records is #(1—1/r)*, and the probability that the
(1 +1)’st update is for an unmodified record is (1 ~ 1/n)*.

Next, consider bit i of the Bloom filter and the hash function j}, 1<j<h Letkbe
the key corresponding to one of the i updates. Since f; is a uniform hash function, the
probability that f;(k) # i is 1—1/m. As the k hash functions are independent, the proba-
bility that f;(k) # i for all & hash functions is (1 - 1/m y*. If this is the only update, the
probability that bit i of the filter is zero is (1 - 1/m)*. From the assumption on update
requests, it follows that the probability that bit i is zero following the u« updates is
(1 - 1/m)*. From this, we conclude that if after » updates we make a query for an



unmodified record, the probability of a filter error is (1 — (1— 1/m)**)*. The probability,
P (u}, that an arbitrary query made after # updates results in a filter error is this quantity
times the probability that the query is for an unmodified record. Hence,

Plu)=(1-1m>1 - (1 -1t
Using the approximation
{(F=1/x)2 ~ ¢ 9%
for large x, we obtain
P (1) ~ e ™M1 — g uh/myh

when n and m are large.

Suppose we wish to design a Bloom filter that minimizes the probability of a filter
error. This probability is highest just before the master index is reorganized and the
differential index becomes empty. Let « denote the number of updates done up to this
time. In most applications, m is determined by the amount of memory available, and # is
fixed. So, the only variable in design is 4. Differentiating P (4) with respect to # and set-
ting the result to zero yields .

h = (log,2)m/u ~0.693m /u

We may verify that this / yields a minimum for P(u). Actually, since & has to be an
integer, the number of hash functions to use either is [0.693m/u] or [0.693m/u],
depending on which one results in a smaller P (u).

EXERCISES

1. By differentiating P (1) with respect to h, show that P (1) is minimized when
h = (tog,2)m /u.
2. Suppose that you are to design a Bloom filter with minimum P{x) and that n =
100,000, m = 5008, and u = 100Q.
(a) Using any of the results obtained in the text, compute the number, &, of hash
functions to use. Show your computations.

(b)  What is the probability, P (u), of a filter error when 4 has this value?
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CHAPTER 9

Priority Queues

9.1 SINGLE- AND DOUBLE-ENDED PRIORITY QUEUES

A priority queue is a collection of elements such that each element has an associated
priority. We study two varieties of priority queues—single- and double-ended—in this
chapter. Single-ended priority queues, which were first studied in Section 5.6, may be
further categorized as min and max priority queues. As noted in Section 5.6.1, the opera-
tions supported by a min priority queue are:

SP1: Return an element with minimum priority.
SP2: Insert an element with an arbitrary priority.

SP3: Delete an element with minimum priority.,

The operations supported by a max priority queue are the same as those supported
by a min priority queue except that in SP1 and SP3 we replace minimum by maximum.
The heap structure of Section 5.6 is a classic data structure for the representation of a
priority queve. Using a min (max) heap, the minimum (maximum) element can be found
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